Araştırma Makalesi
BibTex RIS Kaynak Göster

Impact of Tebuconazole Fungicide on Drone Semen Quality

Yıl 2024, Cilt: 6 Sayı: 2, 71 - 77, 31.12.2024
https://doi.org/10.51755/turkvetj.1577784

Öz

Tebuconazole (TEB) is a widely used fungicide of the triazole group, especially in fruit tree cultivation. It has adverse effects on the reproductive system by disrupting cellular and hormonal mechanisms in most species. Lots of studies are proven the presence of TEB’s residues on fruit trees. However, no study has been found on its effect on the reproductive parameters of drones. Honey bees are considered at risk in terms of reproductive systems since they most probably transport this chemical to the colony through nectar and pollen. Therefore, it was aimed to investigate to potential toxic effects of TEB on drone semen quality, a crucial element in reproductive system of honey bee in dose and time dependent manner. Honey bee semen in five different tubes, each containing 1.0 – 1.5 x 108/ml spermatozoa, were exposed to 0, 1, 10, 100, and 1000 µM of TEB, respectively for 24 h. Afterward, semen were analyzed for motility (MOT), plasma membrane integrity (PMI), and mitochondrial membrane potential (MMP) at 0 and 24 hours. The findings of this study revealed that highest concentration of TEB (1000 µM) significantly reduced (p≤0.05) MOT and PMI of semen compared to other concentrations even at 0 h. Following 24 h incubation, MOT, PMI and MMP values of groups exposed to 1000 µM TEB significantly lower (p≤0.05) than other groups. On the other hand, lower concentrations of TEB between 0-100 µM did not significantly change any parameters evaluated in this study at both 0 and 24 h (p>0.05). In conclusion, although it is only observed at the highest dose of TEB, our results showed that TEB has a detrimental effect on drone semen. Furthermore, it would be useful to conduct more comprehensive studies supported by in vitro and in vivo research in the future.

Kaynakça

  • Abdelkader, F. B., Barbouche, N., Belzunces, L., & Brunet, J. (2015). Effects of Some Insecticides on the Viability and the ATP Synthesis of Honeybee Drone’s Spermatozoid in vitro Exposed. Tunis. J. Plant Prot., 10(1), 79-93.
  • Ahmad, M., Nasrullah, R., Riaz, H., Sattar, A., & Ahmad, N. (2014). Changes in motility, morphology, plasma membrane and acrosome integrity during stages of cryopreservation of buck sperm. J S Afr Vet Assoc, 85(1), 972. https://doi.org/10.4102/jsava.v85i1.972 Atmaca, N., Arikan, S., Essiz, D., Kalender, H., Simsek, O., Bilmen, F. S., & Kabakci, R. (2018). Effects of mancozeb, metalaxyl and tebuconazole on steroid production by bovine luteal cells in vitro. Environmental Toxicology and Pharmacology, 59, 114-118. https://doi.org/10.1016/j.etap.2018.03.009
  • Authority, E. (2015). Conclusion on the peer review of the pesticide risk assessment of the active substance ferric phosphate. EFSA Journal, 13(1). https://doi.org/10.2903/j.efsa.2015.3973
  • Burley, L. M., Fell, R. D., & Saacke, R. G. (2008). Survival of honey bee (Hymenoptera: Apidae) spermatozoa incubated at room temperature from drones exposed to miticides. Journal of economic entomology, 101(4), 1081-1087. https://doi.org/10.1093/jee/101.4.1081
  • Cang, T., Lou, Y., Zhu, Y.-C., Li, W., Weng, H., Lv, L., & Wang, Y. (2023). Mixture toxicities of tetrachlorantraniliprole and tebuconazole to honey bees (Apis mellifera L.) and the potential mechanism. Environment International, 172, 107764. https://doi.org/10.1016/j.envint.2023.107764
  • Ciereszko, A., Wilde, J., Dietrich, G. J., Siuda, M., Bąk, B., Judycka, S., & Karol, H. (2017). Sperm parameters of honeybee drones exposed to imidacloprid. Apidologie, 48, 211-222. https://doi.org/10.1007/s13592-016-0466-2
  • Cobey, S. W., Tarpy, D. R., & Woyke, J. (2013). Standard methods for instrumental insemination of Apis mellifera queens. Journal of Apicultural Research, 52(4), 1-18. https://doi.org/10.3896/IBRA.1.52.4.09
  • De Pauw, I., Van Soom, A., Mintiens, K., Verberckmoes, S., & de Kruif, A. (2003). In vitro survival of bovine spermatozoa stored at room temperature under epididymal conditions. Theriogenology, 59(5-6), 1093-1107. https://doi.org/10.1016/S0093-691X(02)01207-4
  • TEDX, (2017) TEDX List of Potential Endocrine Disruptors. Retrieved from https://endocrinedisruption.org EUR-Lex (2009). Regulation (Ec) No 1107/2009 Of The European Parliament And Of The Council.
  • Fang, Q., Wu, R., Hu, G., Lai, A., Wu, K., Zhang, L., Feng, J., & Cao, H. (2020). Dissipation behavior, residue distribution and risk assessment of three fungicides in pears. Journal of the Science of Food and Agriculture, 100(4), 1757-1763. https://doi.org/10.1002/jsfa.10199
  • Fine, J. D., Mullin, C. A., Frazier, M. T., & Reynolds, R. D. (2017). Field residues and effects of the insect growth regulator novaluron and its major co-formulant N-methyl-2-pyrrolidone on honey bee reproduction and development. Journal of economic entomology, 110(5), 1993-2001. https://doi.org/10.1093/jee/tox220
  • Fisher, A., & Rangel, J. (2018). Exposure to pesticides during development negatively affects honey bee (Apis mellifera) drone sperm viability. PLoS One, 13(12), e0208630. https://doi.org/10.1371/journal.pone.0208630
  • Fraser, L., Gorszczaruk, K., & Strzeżek, J. (2001). Relationship between motility and membrane integrity of boar spermatozoa in media varying in osmolality. Reproduction in Domestic Animals, 36(6), 325-329. https://doi.org/10.1046/j.1439-0531.2001.00310.x
  • Gregorc, A. (2020). Monitoring of honey bee colony losses: A special issue. In (Vol. 12, pp. 403): MDPI. https://doi.org/10.3390/d12100403
  • Hajer, B., Abdallah, F. B., Bkhairia, I., Boudawara, O., Nasri, M., Hakim, A., & Amara, I. B. (2020). Efficacy of essential trace elements supplementation on mineral composition, sperm characteristics, antioxidant status, and genotoxicity in testis of tebuconazole-treated rats. Biomedical and Environmental Sciences, 33(10), 760-770.
  • Halder, S., Ghosh, S., Khan, R., Khan, A. A., Perween, T., & Hasan, M. A. (2019). Role of pollination in fruit crops: A review. The Pharma Innovation Journal, 8(5), 695-702.
  • Inouri-Iskounen, A., Sadeddine-Zennouche, O., Nait Mouloud, M., Kebieche, M., & Iguer-Ouada, M. (2020). In vitro effects of imidacloprid on honey bee sperm: evaluation using computer-aided sperm analysis (CASA). Journal of Apicultural Research, 59(4), 343-349. https://doi.org/10.1080/00218839.2020.1775017
  • Ito, S., Umehara, M., Hanada, A., Yamaguchi, S., & Asami, T. (2013). Tebuconazole derivatives are potent inhibitors of strigolactone biosynthesis. Journal of Pesticide Science, 38(3), 147-151. https://doi.org/10.1584/jpestics.D13-011
  • Johnson, R. M., Ellis, M. D., Mullin, C. A., & Frazier, M. (2010). Pesticides and honey bee toxicity–USA. Apidologie, 41(3), 312-331. https://doi.org/10.1051/apido/2010018
  • Kabakci, R., Kaya, A., Yigit, A. A., & Varisli, O. (2021). Assessment of tebuconazole exposure on bovine testicular cells and epididymal spermatozoa. Acta Veterinaria Hungarica, 69(2), 180-188. https://doi.org/10.1556/004.2021.00023
  • Kabakci, R., Varisli, O., Abdulkadir, K., Bastan, I., & Simsek, S. (2019). Boğa sperması motilite parametreleri üzerine dietilheksil fitalatın etkisi. Veterinary Journal of Mehmet Akif Ersoy University, 4(2), 62-68. https://doi.org/10.24880/maeuvfd.637406
  • Kaftanoglu, O., & Peng, Y.-S. (1984). Preservation of honeybee spermatozoa in liquid nitrogen. Journal of Apicultural Research, 23(3), 157-163. https://doi.org/10.1080/00218839.1984.11100625
  • Kairo, G., Provost, B., Tchamitchian, S., Ben Abdelkader, F., Bonnet, M., Cousin, M., Sénéchal, J., Benet, P., Kretzschmar, A., & Belzunces, L. P. (2016). Drone exposure to the systemic insecticide Fipronil indirectly impairs queen reproductive potential. Scientific reports, 6(1), 31904. https://doi.org/10.1038/srep31904
  • Kaya, A., & Akyol, N. (2023). Effects of uncontrolled queen importation and migratory beekeeping on the racial purity and spermatological parameters of honey bee (Apis mellifera anatoliaca) population in Central Anatolia. Iranian Veterinary Journal, 19(1), 35-44. https://doi.org/10.22055/ivj.2023.379729.2542
  • Kaya, A., & Uysal, O. (2023). In vitro spermatological parameters in drones. Uludağ Arıcılık Dergisi, 23(2), 268-279. https://doi.org/10.31467/uluaricilik.1279779
  • Kjærstad, M. B., Taxvig, C., Andersen, H. R., & Nellemann, C. (2010). Mixture effects of endocrine disrupting compounds in vitro. International Journal of Andrology, 33(2), 425-433. https://doi.org/10.1111/j.1365-2605.2009.01034.x
  • Li, P., Sun, P., Dong, X., & Li, B. (2020). Residue analysis and kinetics modeling of thiophanate‐methyl, carbendazim, tebuconazole and pyraclostrobin in apple tree bark using QuEChERS/HPLC–VWD. Biomedical Chromatography, 34(9), e4851. https://doi.org/10.1002/bmc.4851
  • Lucini, L., & Molinari, G. P. (2009). Effect of different formulations on tebuconazole residues in stone fruits. Pest Management Science: Formerly Pesticide Science, 65(4), 440-443. https://doi.org/10.1002/ps.1708
  • Mohapatra, S. (2015). Residue levels and dissipation behaviors for trifloxystrobin and tebuconazole in mango fruit and soil. Environmental Monitoring and Assessment, 187, 1-10. https://doi.org/10.1007/s10661-015-4324-x
  • Organization, W. H. The WHO Recommended Classification of Pesticides by Hazard. Retrieved from https://www.who.int/publications/i/item/9789240005662
  • Serra, L., Bourdon, G., Estienne, A., Fréville, M., Ramé, C., Chevaleyre, C., Didier, P., Chahnamian, M., Ganier, P., & Pinault, F. (2023). Triazole pesticides exposure impaired steroidogenesis associated to an increase in AHR and CAR expression in testis and altered sperm parameters in chicken. Toxicology Reports, 10, 409-427. https://doi.org/10.1016/j.toxrep.2023.03.005
  • Straub, L., Villamar‐Bouza, L., Bruckner, S., Chantawannakul, P., Kolari, E., Maitip, J., Vidondo, B., Neumann, P., & Williams, G. R. (2021). Negative effects of neonicotinoids on male honeybee survival, behaviour and physiology in the field. Journal of applied ecology, 58(11), 2515-2528. https://doi.org/10.1111/1365-2664.14000
  • Szarka, A. Z., & Ramanarayanan, T. S. (2021). Co-occurrence of Conazole fungicide residues in raw agricultural commodities sampled by the United States Department of Agriculture Pesticide Data Program. Journal of Agricultural and Food Chemistry, 69(41), 12305-12313. https://doi.org/10.1021/acs.jafc.1c04062
  • Taxvig, C., Hass, U., Axelstad, M., Dalgaard, M., Boberg, J., Andeasen, H. R., & Vinggaard, A. M. (2007). Endocrine-disrupting activities in vivo of the fungicides tebuconazole and epoxiconazole. Toxicological Sciences, 100(2), 464-473. https://doi.org/10.1093/toxsci/kfm227
  • Uhl, P., & Brühl, C. A. (2019). The impact of pesticides on flower‐visiting insects: A review with regard to European risk assessment. Environmental toxicology and chemistry, 38(11), 2355-2370. https://doi.org/10.1002/etc.4572
  • Varisli, O., Uguz, C., Agca, C., & Agca, Y. (2009). Various physical stress factors on rat sperm motility, integrity of acrosome, and plasma membrane. J Androl, 30(1), 75-86. https://doi.org/10.2164/jandrol.107.004333
  • Yan, W., Li, G., Lu, Q., Hou, J., Pan, M., Peng, M., Peng, X., Wan, H., Liu, X., & Wu, Q. (2023). Molecular Mechanisms of Tebuconazole Affecting the Social Behavior and Reproduction of Zebrafish. International Journal of Environmental Research and Public Health, 20(5), 3928. https://doi.org/10.3390/ijerph20053928
  • Yoder, J. A., Nelson, B. W., Jajack, A. J., & Sammataro, D. (2017). Fungi and the effects of fungicides on the honey bee colony. Beekeeping–From science to practice, 73-90. https://doi.org/10.1007/978-3-319-60637-8_5
  • Zhou, J., Zhang, J., Li, F., & Liu, J. (2016). Triazole fungicide tebuconazole disrupts human placental trophoblast cell functions. Journal of Hazardous Materials, 308, 294-302. https://doi.org/10.1016/j.jhazmat.2016.01.055

Bir Fungusit Olan Tebukonazol’ün Arı Sperma Kalitesine Etkisi

Yıl 2024, Cilt: 6 Sayı: 2, 71 - 77, 31.12.2024
https://doi.org/10.51755/turkvetj.1577784

Öz

Tebukonazol (TEB) özellikle meyve ağacı yetiştiriciliğinde yaygın olarak kullanılan triazol grubu bir fungisittir. Çoğu türde hücresel ve hormonal mekanizmaları bozarak üreme sistemi üzerinde olumsuz etkileri vardır. Meyve ağaçlarında TEB kalıntılarının varlığı birçok çalışma ile kanıtlanmıştır. Ancak, erkek arıların üreme parametreleri üzerindeki etkisine ilişkin bir çalışmaya rastlanılmamıştır. Bal arıları üreme sistemleri açısından risk altında kabul edilmektedir çünkü büyük olasılıkla bu kimyasalı nektar ve polen yoluyla koloniye taşımaktadırlar. Bundan dolayı, bu çalışmada TEB' in bal arısının üreme sisteminde önemli bir unsur olan erkek arı sperm kalitesi üzerindeki potansiyel toksik etkilerinin doza ve zamana bağlı olarak araştırılması amaçlandı. Her biri 1.0- 1.5 x 108/ml spermatozoa içeren beş farklı tüpteki bal arısı sperması 24 saat boyunca sırasıyla 0, 1, 10, 100 ve 1000 µM TEB' e maruz bırakıldı. Daha sonra sperma 0 ve 24. saatlerde motilite (MOT), plazma membran bütünlüğü (PMB) ve mitokondriyal membran potansiyeli (MMP) açısından analiz edildi. Bu çalışmanın bulguları, en yüksek TEB konsantrasyonunun (1000 µM) arı spermasının MOT ve PMB değerlerini 0. saatte bile diğer konsantrasyonlara kıyasla önemli ölçüde azalttığını (p≤0,05) ortaya koydu. 24 saatlik inkübasyonun ardından, 1000 µM TEB'e maruz kalan grupta MOT, PMB ve MMP değerleri diğer gruplara kıyasla önemli ölçüde daha düşüktü (p≤0,05). Öte yandan, hem 0. hem de 24. saatte TEB' in 0-100 µM arasındaki düşük dozları çalışmada incelenen hiçbir parametreyi anlamlı bir şekilde değiştirmedi (p>0,05). Sonuç olarak, sadece en yüksek TEB dozunda gözlenmesine rağmen, sonuçlarımız TEB' in erkek arı sperması üzerinde zararlı bir etkisi olduğunu gösterdi. Ayrıca, gelecekte in vitro ve in vivo araştırmalarla desteklenen daha kapsamlı çalışmaların yapılması faydalı olacaktır.

Kaynakça

  • Abdelkader, F. B., Barbouche, N., Belzunces, L., & Brunet, J. (2015). Effects of Some Insecticides on the Viability and the ATP Synthesis of Honeybee Drone’s Spermatozoid in vitro Exposed. Tunis. J. Plant Prot., 10(1), 79-93.
  • Ahmad, M., Nasrullah, R., Riaz, H., Sattar, A., & Ahmad, N. (2014). Changes in motility, morphology, plasma membrane and acrosome integrity during stages of cryopreservation of buck sperm. J S Afr Vet Assoc, 85(1), 972. https://doi.org/10.4102/jsava.v85i1.972 Atmaca, N., Arikan, S., Essiz, D., Kalender, H., Simsek, O., Bilmen, F. S., & Kabakci, R. (2018). Effects of mancozeb, metalaxyl and tebuconazole on steroid production by bovine luteal cells in vitro. Environmental Toxicology and Pharmacology, 59, 114-118. https://doi.org/10.1016/j.etap.2018.03.009
  • Authority, E. (2015). Conclusion on the peer review of the pesticide risk assessment of the active substance ferric phosphate. EFSA Journal, 13(1). https://doi.org/10.2903/j.efsa.2015.3973
  • Burley, L. M., Fell, R. D., & Saacke, R. G. (2008). Survival of honey bee (Hymenoptera: Apidae) spermatozoa incubated at room temperature from drones exposed to miticides. Journal of economic entomology, 101(4), 1081-1087. https://doi.org/10.1093/jee/101.4.1081
  • Cang, T., Lou, Y., Zhu, Y.-C., Li, W., Weng, H., Lv, L., & Wang, Y. (2023). Mixture toxicities of tetrachlorantraniliprole and tebuconazole to honey bees (Apis mellifera L.) and the potential mechanism. Environment International, 172, 107764. https://doi.org/10.1016/j.envint.2023.107764
  • Ciereszko, A., Wilde, J., Dietrich, G. J., Siuda, M., Bąk, B., Judycka, S., & Karol, H. (2017). Sperm parameters of honeybee drones exposed to imidacloprid. Apidologie, 48, 211-222. https://doi.org/10.1007/s13592-016-0466-2
  • Cobey, S. W., Tarpy, D. R., & Woyke, J. (2013). Standard methods for instrumental insemination of Apis mellifera queens. Journal of Apicultural Research, 52(4), 1-18. https://doi.org/10.3896/IBRA.1.52.4.09
  • De Pauw, I., Van Soom, A., Mintiens, K., Verberckmoes, S., & de Kruif, A. (2003). In vitro survival of bovine spermatozoa stored at room temperature under epididymal conditions. Theriogenology, 59(5-6), 1093-1107. https://doi.org/10.1016/S0093-691X(02)01207-4
  • TEDX, (2017) TEDX List of Potential Endocrine Disruptors. Retrieved from https://endocrinedisruption.org EUR-Lex (2009). Regulation (Ec) No 1107/2009 Of The European Parliament And Of The Council.
  • Fang, Q., Wu, R., Hu, G., Lai, A., Wu, K., Zhang, L., Feng, J., & Cao, H. (2020). Dissipation behavior, residue distribution and risk assessment of three fungicides in pears. Journal of the Science of Food and Agriculture, 100(4), 1757-1763. https://doi.org/10.1002/jsfa.10199
  • Fine, J. D., Mullin, C. A., Frazier, M. T., & Reynolds, R. D. (2017). Field residues and effects of the insect growth regulator novaluron and its major co-formulant N-methyl-2-pyrrolidone on honey bee reproduction and development. Journal of economic entomology, 110(5), 1993-2001. https://doi.org/10.1093/jee/tox220
  • Fisher, A., & Rangel, J. (2018). Exposure to pesticides during development negatively affects honey bee (Apis mellifera) drone sperm viability. PLoS One, 13(12), e0208630. https://doi.org/10.1371/journal.pone.0208630
  • Fraser, L., Gorszczaruk, K., & Strzeżek, J. (2001). Relationship between motility and membrane integrity of boar spermatozoa in media varying in osmolality. Reproduction in Domestic Animals, 36(6), 325-329. https://doi.org/10.1046/j.1439-0531.2001.00310.x
  • Gregorc, A. (2020). Monitoring of honey bee colony losses: A special issue. In (Vol. 12, pp. 403): MDPI. https://doi.org/10.3390/d12100403
  • Hajer, B., Abdallah, F. B., Bkhairia, I., Boudawara, O., Nasri, M., Hakim, A., & Amara, I. B. (2020). Efficacy of essential trace elements supplementation on mineral composition, sperm characteristics, antioxidant status, and genotoxicity in testis of tebuconazole-treated rats. Biomedical and Environmental Sciences, 33(10), 760-770.
  • Halder, S., Ghosh, S., Khan, R., Khan, A. A., Perween, T., & Hasan, M. A. (2019). Role of pollination in fruit crops: A review. The Pharma Innovation Journal, 8(5), 695-702.
  • Inouri-Iskounen, A., Sadeddine-Zennouche, O., Nait Mouloud, M., Kebieche, M., & Iguer-Ouada, M. (2020). In vitro effects of imidacloprid on honey bee sperm: evaluation using computer-aided sperm analysis (CASA). Journal of Apicultural Research, 59(4), 343-349. https://doi.org/10.1080/00218839.2020.1775017
  • Ito, S., Umehara, M., Hanada, A., Yamaguchi, S., & Asami, T. (2013). Tebuconazole derivatives are potent inhibitors of strigolactone biosynthesis. Journal of Pesticide Science, 38(3), 147-151. https://doi.org/10.1584/jpestics.D13-011
  • Johnson, R. M., Ellis, M. D., Mullin, C. A., & Frazier, M. (2010). Pesticides and honey bee toxicity–USA. Apidologie, 41(3), 312-331. https://doi.org/10.1051/apido/2010018
  • Kabakci, R., Kaya, A., Yigit, A. A., & Varisli, O. (2021). Assessment of tebuconazole exposure on bovine testicular cells and epididymal spermatozoa. Acta Veterinaria Hungarica, 69(2), 180-188. https://doi.org/10.1556/004.2021.00023
  • Kabakci, R., Varisli, O., Abdulkadir, K., Bastan, I., & Simsek, S. (2019). Boğa sperması motilite parametreleri üzerine dietilheksil fitalatın etkisi. Veterinary Journal of Mehmet Akif Ersoy University, 4(2), 62-68. https://doi.org/10.24880/maeuvfd.637406
  • Kaftanoglu, O., & Peng, Y.-S. (1984). Preservation of honeybee spermatozoa in liquid nitrogen. Journal of Apicultural Research, 23(3), 157-163. https://doi.org/10.1080/00218839.1984.11100625
  • Kairo, G., Provost, B., Tchamitchian, S., Ben Abdelkader, F., Bonnet, M., Cousin, M., Sénéchal, J., Benet, P., Kretzschmar, A., & Belzunces, L. P. (2016). Drone exposure to the systemic insecticide Fipronil indirectly impairs queen reproductive potential. Scientific reports, 6(1), 31904. https://doi.org/10.1038/srep31904
  • Kaya, A., & Akyol, N. (2023). Effects of uncontrolled queen importation and migratory beekeeping on the racial purity and spermatological parameters of honey bee (Apis mellifera anatoliaca) population in Central Anatolia. Iranian Veterinary Journal, 19(1), 35-44. https://doi.org/10.22055/ivj.2023.379729.2542
  • Kaya, A., & Uysal, O. (2023). In vitro spermatological parameters in drones. Uludağ Arıcılık Dergisi, 23(2), 268-279. https://doi.org/10.31467/uluaricilik.1279779
  • Kjærstad, M. B., Taxvig, C., Andersen, H. R., & Nellemann, C. (2010). Mixture effects of endocrine disrupting compounds in vitro. International Journal of Andrology, 33(2), 425-433. https://doi.org/10.1111/j.1365-2605.2009.01034.x
  • Li, P., Sun, P., Dong, X., & Li, B. (2020). Residue analysis and kinetics modeling of thiophanate‐methyl, carbendazim, tebuconazole and pyraclostrobin in apple tree bark using QuEChERS/HPLC–VWD. Biomedical Chromatography, 34(9), e4851. https://doi.org/10.1002/bmc.4851
  • Lucini, L., & Molinari, G. P. (2009). Effect of different formulations on tebuconazole residues in stone fruits. Pest Management Science: Formerly Pesticide Science, 65(4), 440-443. https://doi.org/10.1002/ps.1708
  • Mohapatra, S. (2015). Residue levels and dissipation behaviors for trifloxystrobin and tebuconazole in mango fruit and soil. Environmental Monitoring and Assessment, 187, 1-10. https://doi.org/10.1007/s10661-015-4324-x
  • Organization, W. H. The WHO Recommended Classification of Pesticides by Hazard. Retrieved from https://www.who.int/publications/i/item/9789240005662
  • Serra, L., Bourdon, G., Estienne, A., Fréville, M., Ramé, C., Chevaleyre, C., Didier, P., Chahnamian, M., Ganier, P., & Pinault, F. (2023). Triazole pesticides exposure impaired steroidogenesis associated to an increase in AHR and CAR expression in testis and altered sperm parameters in chicken. Toxicology Reports, 10, 409-427. https://doi.org/10.1016/j.toxrep.2023.03.005
  • Straub, L., Villamar‐Bouza, L., Bruckner, S., Chantawannakul, P., Kolari, E., Maitip, J., Vidondo, B., Neumann, P., & Williams, G. R. (2021). Negative effects of neonicotinoids on male honeybee survival, behaviour and physiology in the field. Journal of applied ecology, 58(11), 2515-2528. https://doi.org/10.1111/1365-2664.14000
  • Szarka, A. Z., & Ramanarayanan, T. S. (2021). Co-occurrence of Conazole fungicide residues in raw agricultural commodities sampled by the United States Department of Agriculture Pesticide Data Program. Journal of Agricultural and Food Chemistry, 69(41), 12305-12313. https://doi.org/10.1021/acs.jafc.1c04062
  • Taxvig, C., Hass, U., Axelstad, M., Dalgaard, M., Boberg, J., Andeasen, H. R., & Vinggaard, A. M. (2007). Endocrine-disrupting activities in vivo of the fungicides tebuconazole and epoxiconazole. Toxicological Sciences, 100(2), 464-473. https://doi.org/10.1093/toxsci/kfm227
  • Uhl, P., & Brühl, C. A. (2019). The impact of pesticides on flower‐visiting insects: A review with regard to European risk assessment. Environmental toxicology and chemistry, 38(11), 2355-2370. https://doi.org/10.1002/etc.4572
  • Varisli, O., Uguz, C., Agca, C., & Agca, Y. (2009). Various physical stress factors on rat sperm motility, integrity of acrosome, and plasma membrane. J Androl, 30(1), 75-86. https://doi.org/10.2164/jandrol.107.004333
  • Yan, W., Li, G., Lu, Q., Hou, J., Pan, M., Peng, M., Peng, X., Wan, H., Liu, X., & Wu, Q. (2023). Molecular Mechanisms of Tebuconazole Affecting the Social Behavior and Reproduction of Zebrafish. International Journal of Environmental Research and Public Health, 20(5), 3928. https://doi.org/10.3390/ijerph20053928
  • Yoder, J. A., Nelson, B. W., Jajack, A. J., & Sammataro, D. (2017). Fungi and the effects of fungicides on the honey bee colony. Beekeeping–From science to practice, 73-90. https://doi.org/10.1007/978-3-319-60637-8_5
  • Zhou, J., Zhang, J., Li, F., & Liu, J. (2016). Triazole fungicide tebuconazole disrupts human placental trophoblast cell functions. Journal of Hazardous Materials, 308, 294-302. https://doi.org/10.1016/j.jhazmat.2016.01.055
Toplam 39 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Veteriner Bilimleri (Diğer)
Bölüm Araştırma Makalesi
Yazarlar

Abdulkadir Kaya 0000-0001-7903-4358

Ruhi Kabakçı 0000-0001-9131-0933

Erken Görünüm Tarihi 28 Aralık 2024
Yayımlanma Tarihi 31 Aralık 2024
Gönderilme Tarihi 1 Kasım 2024
Kabul Tarihi 16 Aralık 2024
Yayımlandığı Sayı Yıl 2024Cilt: 6 Sayı: 2

Kaynak Göster

APA Kaya, A., & Kabakçı, R. (2024). Impact of Tebuconazole Fungicide on Drone Semen Quality. Turkish Veterinary Journal, 6(2), 71-77. https://doi.org/10.51755/turkvetj.1577784