Araştırma Makalesi
BibTex RIS Kaynak Göster

Yumurtacı Tavuklarda Oksitetrasiklinin Lipid Peroksidatif ve Sitotoksik Etkileri

Yıl 2025, Cilt: 7 Sayı: 2, 56 - 62, 29.12.2025
https://doi.org/10.51755/turkvetj.1811696

Öz

Bu çalışma ile yumurtacı tavuklarda terapötik dozlarda kullanılan oksitetrasiklinin lipid peroksidatif ve sitotoksik etkilerinin araştırılması amaçlandı. Çalışma için her grupta 10 adet olmak üzere 42 haftalık 40 Lohman Brown yumurtacı tavuk (1458±55 kg) rastgele 4 gruba ayrıldı. Gruplar sırasıyla kontrol, Deney I (25 mg/kg), Deney II (50 mg/kg) ve Deney III (100 mg/kg) olarak belirlendi. Belirtilen miktarlarda oksitetrasiklin çözeltisi 10 gün boyunca gastrik gavaj yöntemiyle verildi. Uygulama süresi sonunda tavukların dekapitasyon ile kan örnekleri; nekropsi sırasında karaciğer, dalak ve böbrek doku örnekleri alındı. Örneklerde histopatolojik incelemeler ve lipid peroksidasyon belirteç ölçümleri yapıldı. Oksitetrasiklin dozuna bağlı olarak karaciğer (yağ dejenerasyonu ve kanama) ve böbrekte (tubüler dejenerasyon ve kanama) dejeneratif bulgular belirlendi (P<0.05). MDA ve GSH düzeylerinin, tüm dokularda (kan, karaciğer, dalak ve böbrek) Deney I grubu için kontrol grubuna göre anlamlı değişim göstermediği belirlendi (P>0.05). Deney II ve Deney III gruplarında MDA düzeylerinin istatistiksel olarak anlamlı şekilde arttığı, GSH düzeylerinin ise anlamlı şekilde azaldığı tespit edildi. GSH-Px, SOD ve CAT aktiviteleri Deney II ve Deney III gruplarında; karaciğer, böbrek ve dalak dokusu ile eritrositlerde oksitetrasiklin dozu arttıkça anlamlı düşüşler gösterdi. Deney II gruplarında (dalak ve eritrosit) GSH-Px için ve Deney III gruplarında (böbrek) CAT için istatistiksel olarak anlamlı artışlar belirlendi (p<0.001).
Sonuç olarak, yumurtacı tavuklarda oksitetrasiklinin incelenen dokular üzerinde doza bağlı histopatolojik-dejeneratif etkilere yol açtığı, lipid peroksidatif ve sitotoksik etkiler gösterdiği belirlendi.

Etik Beyan

Hayvan deneyleri, Erciyes Üniversitesi Hayvan Deneyleri Yerel Etik Kurulunca uygun bulunmuştur (Tarih: 01.06.2022 Karar No: 22/122).

Kaynakça

  • Abu-Zahra, N. I., Atia, A. A., Elseify, M. M., & Soliman, S. (2024). Biological and histological changes and DNA damage in Oreochromis niloticus exposed to oxytetracycline: a potential amelioratory role of ascorbic acid. Aquaculture International, 32(4), 3889-3916. https://doi.org/10.1007/s10499-023-01356-5
  • Arzey, G. G., & Arzey, K. E. (1992). Successful treatment of mycoplasmosis in layer chickens with single dose therapy. Australian veterinary journal, 69(6), 126-128. DOI: 10.1111/j.1751-0813.1992.tb07478.x
  • Botelho, R. G., Christofoletti, C. A., Correia, J. E., Ansoar, Y., Olinda, R. A. D., & Tornisielo, V. L. (2015). Genotoxic responses of juvenile tilapia (Oreochromis niloticus) exposed to florfenicol and oxytetracycline. Chemosphere, 132, 206-212. http://dx.doi.org/10.1016/j.chemosphere.2015.02.053
  • Chi, Z., Liu, R., You, H., Ma, S., Cui, H., & Zhang, Q. (2014). Probing the in vitro cytotoxicity of the veterinary drug oxytetracycline. PLoS One, 9(7). DOI: 10.1371/journal.pone.0102334
  • Ćupić, V. N., Ivanović, S. R., Borozan, S. Z., Mujezinović, I. A., Ćupić-Miladinović, D. V., & Aleksić, J. Z. (2022). Antimicrobial agents in laying hens. Zbornik Matice srpske za prirodne nauke, (142), 61-71. https://doi.org/10.2298/ZMSPN2242061C
  • Dey, B., Abraham, T. J., Singha, J., Roy, A., Karmakar, S., Kumar Patil, P., & Roy, U. (2022). Histopathological changes and tissue residue concentrations of monosex Nile tilapia (Oreochromis niloticus, L) fries exposed to oxytetracycline. Aquaculture International, 30(4), 2113-2128. https://doi.org/10.1007/s10499-022-00892-w
  • Erkekoğlu, P., & Baydar, T. (2021). Güncel in vitro sitotoksisite testleri. Hacettepe University Journal of the Faculty of Pharmacy, 41(1), 45-63.
  • Gallo, A., Landi, R., Rubino, V., Di Cerbo, A., Giovazzino, A., Palatucci, A. T., Sara C, Gianandrea G, Sergio C, Laura C, Giuseppina R, Andrea A, Terrazzano, G. (2017). Oxytetracycline induces DNA damage and epigenetic changes: a possible risk for human and animal health?. PeerJ, 5, e3236. DOI 10.7717/peerj.3236
  • Giguère S, John FP, Patricia MD. (2013) Antimicrobial Therapy In Veterinary Medicine. John Wiley & Sons; p.: 257-268, 569-587. ISBN 978-0-470-96302-9
  • Junghanns, M. K., & Coles, B. H. (2007). Essentials of Avian Medicine and Sugery. Medication and Administration of Drugs. Blackwell Publishing. S;115. ISBN: 978-1-4051-5755-1
  • Liu, X., Lee, J., Ji, K., Takeda, S., & Choi, K. (2012). Potentials and mechanisms of genotoxicity of six pharmaceuticals frequently detected in freshwater environment. Toxicology Letters, 211(1), 70-76. https://doi:10.1016/j.toxlet.2012.03.003
  • Odore, R., De Marco, M., Gasco, L., Rotolo, L., Meucci, V., Palatucci, A. T., Schiavone, A. (2015). Cytotoxic effects of oxytetracycline residues in the bones of broiler chickens following therapeutic oral administration of a water formulation. Poultry Science, 94(8), 1979-1985. https://doi.org/10.3382/ps/pev141
  • Özcan, O., Erdal, H., Çakırca, G., & Yönden, Z. (2015). Oksidatif stres ve hücre içi lipit, protein ve DNA yapıları üzerine etkileri. Journal of Clinical and Experimental Investigations, 6(3), 331-336. https://doi: 10.5799/ahinjs.01.2015.03.0545
  • Pês TS, Saccol EM, Londero ÉP, Bressan CA, Ourique GM, Rizzetti TM, Osmar DP, Renato Z, Bernardo B, Pavanato MA. (2018) Protective effect of quercetin against oxidative stress induced by oxytetracycline in muscle of silver catfish. Aquaculture. 484: 120-125. https://doi:10.1016/j.aquaculture.2017.10.043
  • Pokrant E, Yévenes K, Trincado L, Terraza G, Galarce N, Maddaleno A, Martín BS, Lapierre L, Cornejo J. (2021) Evaluation of Antibiotic Dissemination into the Environment and Untreated Animals, by Analysis of Oxytetracycline in Poultry Droppings and Litter. Animals (Basel). 11(3): 853. https://doi.org/10.3390/ani11030853 Riviere JE, Papich MG (2018) Veterinary Pharmacology and Therapeutics. John Wiley & Sons. P.: 858-876. ISBN 9781118855881 (epub) Saleh, H. A., Abdel-Motleb, A., & Habib, M. R. (2021). Neurotoxicity and genotoxicity of the veterinary antibiotics oxytetracycline and trimethoprim-sulphadiazine to Biomphalaria alexandrina snails. International Journal of Environmental Studies, 78(6), 983-1002. https://doi.org/10.1080/00207233.2021.1893487
  • Shaddad, S. A., Wasfi, I. A., Maglad, M. A., & Adam, S. E. I. (1985). The effect of oxytetracycline on growth and lipid metabolism in poultry. Comparative Biochemistry and Physiology Part C: Comparative Pharmacology, 80(2), 375-380. https://doi.org/10.1016/0742-8413(85)90071-4 Sharma, M., Thakur, J., Verma, S., & Sharma, P. (2019). Cytotoxic and genotoxic effect of oxytetracycline on fish Cyprinus carpio after acute exposure. Asian J. Pharm. Chem. Res, 12, 134-137. DOI: http://dx.doi.org/10.22159/ajpcr.2019.v12i12.35740
  • Soloneski, S. ve Larramendy, M. L. (Editörler) (2021). Cytotoxicity: New Insights Into Toxic Assessment. BoD–Books on Demand. 1-7,93-100. DOI: http://dx.doi.org/10.5772/intechopen.99299
  • Yarsan, E., & Pehlivan, S. (2020). Veteriner hekimlikte etiket dışı ilaç kullanımı: antimikrobiyal ilaçlar. Veteriner Farmakoloji ve Toksikoloji Derneği Bülteni, 11(3), 134-150. DOI: 10.38137/vetfarmatoksbulten.803682
  • Ziółkowski, H., Grabowski, T., Jasiecka, A., Zuśka-Prot, M., Barski, D., & Jaroszewski, J. J. (2016). Pharmacokinetics of oxytetracycline in broiler chickens following different routes of administration. The Veterinary Journal, 208, 96-98. http://dx.doi.org/10.1016/j.tvjl.2015.08.022
  • Ziółkowski, H., Jasiecka, A., Zuśka-Prot, M., Przybysz, J., Grabowski, T., & Jaroszewski, J. J. (2016). Metal ion-oxytetracycline pharmacokinetic interactions after oral co-administration in broiler chickens. Poultry Science, 95(8), 1927-1933. http://dx.doi.org/10.3382/ps/pew121

Lipid Peroxidative and Cytotoxic Effects of Oxytetracycline in Laying Hens

Yıl 2025, Cilt: 7 Sayı: 2, 56 - 62, 29.12.2025
https://doi.org/10.51755/turkvetj.1811696

Öz

This study aimed to investigate the lipid peroxidation and cytotoxic effects of oxytetracycline used at therapeutic doses in laying hens. For the study, 40 Lohman Brown laying hens (1458±55 kg) aged 42 weeks were randomly divided into 4 groups, with 10 hens in each group. The groups were designated as control, Experiment I (25 mg/kg), Experiment II (50 mg/kg), and Experiment III (100 mg/kg), respectively. Oxytetracycline solution at the specified amounts was administered via gastric gavage for 10 days. At the end of the treatment period, blood samples were collected from chickens by decapitation; liver, spleen, and kidney tissue samples were collected during necropsy. Histopathological examinations and lipid peroxidation marker measurements were performed on the samples. Depending on the oxytetracycline dose, degenerative findings were determined in the liver (fatty degeneration and hemorrhage) and kidney (tubular degeneration and hemorrhage) (P<0.05). MDA and GSH levels did not show significant changes in all tissues (blood, liver, spleen, and kidney) for the Experiment I group compared to the control group (P>0.05). MDA levels were found to be statistically significantly increased in the Experiment II and Experiment III groups, while GSH levels were significantly decreased. GSH-Px, SOD, and CAT activities showed significant decreases in Experiment II and Experiment III groups; in liver, kidney, and spleen tissues, and in erythrocytes as the oxytetracycline dose increased. Statistically significant increases were determined for GSH-Px in Experiment II groups (spleen and erythrocytes) and for CAT in Experiment III groups (kidney) (p<0.001).
In conclusion, it was determined that oxytetracycline caused dose-dependent histopathological-degenerative effects on the examined tissues in laying hens and exhibited lipid peroxidation and cytotoxic effects.

Etik Beyan

Animal experiments have been approved by the Erciyes University Local Animal Experiment Ethics Committee (Date: 01.06.2022 Decision No: 22/122).

Kaynakça

  • Abu-Zahra, N. I., Atia, A. A., Elseify, M. M., & Soliman, S. (2024). Biological and histological changes and DNA damage in Oreochromis niloticus exposed to oxytetracycline: a potential amelioratory role of ascorbic acid. Aquaculture International, 32(4), 3889-3916. https://doi.org/10.1007/s10499-023-01356-5
  • Arzey, G. G., & Arzey, K. E. (1992). Successful treatment of mycoplasmosis in layer chickens with single dose therapy. Australian veterinary journal, 69(6), 126-128. DOI: 10.1111/j.1751-0813.1992.tb07478.x
  • Botelho, R. G., Christofoletti, C. A., Correia, J. E., Ansoar, Y., Olinda, R. A. D., & Tornisielo, V. L. (2015). Genotoxic responses of juvenile tilapia (Oreochromis niloticus) exposed to florfenicol and oxytetracycline. Chemosphere, 132, 206-212. http://dx.doi.org/10.1016/j.chemosphere.2015.02.053
  • Chi, Z., Liu, R., You, H., Ma, S., Cui, H., & Zhang, Q. (2014). Probing the in vitro cytotoxicity of the veterinary drug oxytetracycline. PLoS One, 9(7). DOI: 10.1371/journal.pone.0102334
  • Ćupić, V. N., Ivanović, S. R., Borozan, S. Z., Mujezinović, I. A., Ćupić-Miladinović, D. V., & Aleksić, J. Z. (2022). Antimicrobial agents in laying hens. Zbornik Matice srpske za prirodne nauke, (142), 61-71. https://doi.org/10.2298/ZMSPN2242061C
  • Dey, B., Abraham, T. J., Singha, J., Roy, A., Karmakar, S., Kumar Patil, P., & Roy, U. (2022). Histopathological changes and tissue residue concentrations of monosex Nile tilapia (Oreochromis niloticus, L) fries exposed to oxytetracycline. Aquaculture International, 30(4), 2113-2128. https://doi.org/10.1007/s10499-022-00892-w
  • Erkekoğlu, P., & Baydar, T. (2021). Güncel in vitro sitotoksisite testleri. Hacettepe University Journal of the Faculty of Pharmacy, 41(1), 45-63.
  • Gallo, A., Landi, R., Rubino, V., Di Cerbo, A., Giovazzino, A., Palatucci, A. T., Sara C, Gianandrea G, Sergio C, Laura C, Giuseppina R, Andrea A, Terrazzano, G. (2017). Oxytetracycline induces DNA damage and epigenetic changes: a possible risk for human and animal health?. PeerJ, 5, e3236. DOI 10.7717/peerj.3236
  • Giguère S, John FP, Patricia MD. (2013) Antimicrobial Therapy In Veterinary Medicine. John Wiley & Sons; p.: 257-268, 569-587. ISBN 978-0-470-96302-9
  • Junghanns, M. K., & Coles, B. H. (2007). Essentials of Avian Medicine and Sugery. Medication and Administration of Drugs. Blackwell Publishing. S;115. ISBN: 978-1-4051-5755-1
  • Liu, X., Lee, J., Ji, K., Takeda, S., & Choi, K. (2012). Potentials and mechanisms of genotoxicity of six pharmaceuticals frequently detected in freshwater environment. Toxicology Letters, 211(1), 70-76. https://doi:10.1016/j.toxlet.2012.03.003
  • Odore, R., De Marco, M., Gasco, L., Rotolo, L., Meucci, V., Palatucci, A. T., Schiavone, A. (2015). Cytotoxic effects of oxytetracycline residues in the bones of broiler chickens following therapeutic oral administration of a water formulation. Poultry Science, 94(8), 1979-1985. https://doi.org/10.3382/ps/pev141
  • Özcan, O., Erdal, H., Çakırca, G., & Yönden, Z. (2015). Oksidatif stres ve hücre içi lipit, protein ve DNA yapıları üzerine etkileri. Journal of Clinical and Experimental Investigations, 6(3), 331-336. https://doi: 10.5799/ahinjs.01.2015.03.0545
  • Pês TS, Saccol EM, Londero ÉP, Bressan CA, Ourique GM, Rizzetti TM, Osmar DP, Renato Z, Bernardo B, Pavanato MA. (2018) Protective effect of quercetin against oxidative stress induced by oxytetracycline in muscle of silver catfish. Aquaculture. 484: 120-125. https://doi:10.1016/j.aquaculture.2017.10.043
  • Pokrant E, Yévenes K, Trincado L, Terraza G, Galarce N, Maddaleno A, Martín BS, Lapierre L, Cornejo J. (2021) Evaluation of Antibiotic Dissemination into the Environment and Untreated Animals, by Analysis of Oxytetracycline in Poultry Droppings and Litter. Animals (Basel). 11(3): 853. https://doi.org/10.3390/ani11030853 Riviere JE, Papich MG (2018) Veterinary Pharmacology and Therapeutics. John Wiley & Sons. P.: 858-876. ISBN 9781118855881 (epub) Saleh, H. A., Abdel-Motleb, A., & Habib, M. R. (2021). Neurotoxicity and genotoxicity of the veterinary antibiotics oxytetracycline and trimethoprim-sulphadiazine to Biomphalaria alexandrina snails. International Journal of Environmental Studies, 78(6), 983-1002. https://doi.org/10.1080/00207233.2021.1893487
  • Shaddad, S. A., Wasfi, I. A., Maglad, M. A., & Adam, S. E. I. (1985). The effect of oxytetracycline on growth and lipid metabolism in poultry. Comparative Biochemistry and Physiology Part C: Comparative Pharmacology, 80(2), 375-380. https://doi.org/10.1016/0742-8413(85)90071-4 Sharma, M., Thakur, J., Verma, S., & Sharma, P. (2019). Cytotoxic and genotoxic effect of oxytetracycline on fish Cyprinus carpio after acute exposure. Asian J. Pharm. Chem. Res, 12, 134-137. DOI: http://dx.doi.org/10.22159/ajpcr.2019.v12i12.35740
  • Soloneski, S. ve Larramendy, M. L. (Editörler) (2021). Cytotoxicity: New Insights Into Toxic Assessment. BoD–Books on Demand. 1-7,93-100. DOI: http://dx.doi.org/10.5772/intechopen.99299
  • Yarsan, E., & Pehlivan, S. (2020). Veteriner hekimlikte etiket dışı ilaç kullanımı: antimikrobiyal ilaçlar. Veteriner Farmakoloji ve Toksikoloji Derneği Bülteni, 11(3), 134-150. DOI: 10.38137/vetfarmatoksbulten.803682
  • Ziółkowski, H., Grabowski, T., Jasiecka, A., Zuśka-Prot, M., Barski, D., & Jaroszewski, J. J. (2016). Pharmacokinetics of oxytetracycline in broiler chickens following different routes of administration. The Veterinary Journal, 208, 96-98. http://dx.doi.org/10.1016/j.tvjl.2015.08.022
  • Ziółkowski, H., Jasiecka, A., Zuśka-Prot, M., Przybysz, J., Grabowski, T., & Jaroszewski, J. J. (2016). Metal ion-oxytetracycline pharmacokinetic interactions after oral co-administration in broiler chickens. Poultry Science, 95(8), 1927-1933. http://dx.doi.org/10.3382/ps/pew121
Toplam 20 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Veteriner Farmakoloji
Bölüm Araştırma Makalesi
Yazarlar

Adem Dursun 0000-0002-8933-3084

Gönderilme Tarihi 27 Ekim 2025
Kabul Tarihi 17 Kasım 2025
Yayımlanma Tarihi 29 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 7 Sayı: 2

Kaynak Göster

APA Dursun, A. (2025). Yumurtacı Tavuklarda Oksitetrasiklinin Lipid Peroksidatif ve Sitotoksik Etkileri. Turkish Veterinary Journal, 7(2), 56-62. https://doi.org/10.51755/turkvetj.1811696