Research Article
BibTex RIS Cite

Sıçanlarda Akut Kısıtlama ve Soğuk Kısıtlama Stres Tepkisinin Elektrokardiyografik Değerlendirmesi

Year 2023, , 8 - 12, 31.07.2023
https://doi.org/10.51755/turkvetj.1244382

Abstract

Bu çalışmada, akut kısıtlama stresi ve soğuk kısıtlama stresinin sıçanlarda elektrokardiyografik (EKG) parametreler üzerindeki etkilerini araştırıldı. Toplam 18 adet 8-10 haftalık, ağırlıkları 180-220 g olan erkek Wistar albino rat üç eşit gruba (n=6/grup) ayrıldı. Kontrol grubundaki ratlara stresör uygulanmadı. Kısıtlama grubundaki ratlar 2 saat kısıtlayıcıda tutuldu. Soğuk tutma grubundaki ratlar kısıtlayıcı içinde 2 saat +4°C'de tutuldu. Sıçanlarda Televet II EKG cihazı (Kruuse, Almanya) ile ketamin ve ksilazin anestezisi altında EKG kaydı yapıldı ve derivasyonların analizinde Televet 100 programı (versiyon® 7.0.0, Kruuse, Heusenstamm, Almanya) kullanıldı. PR, QT, QRS intervalleri ve R dalgası amplitüdü analizinde gruplar arasında anlamlı fark yoktu (p >0,05). Ancak, kalp atım hızı soğuk kısıtlama grubunda kontrol grubuna (p <0.001) ve kısıtlama grubuna (p <0.01) göre anlamlı derecede yüksekti. Tersine, RR aralığı soğuk kısıtlama grubunda kontrol grubuna (p <0.001) ve kısıtlama grubuna (p <0.01) göre anlamlı derecede düşüktü. QTc, soğuk kısıtlama stresine maruz bırakılan sıçanlarda, kontrol grubu (p <0.01) ve kısıtlama grubuna (p <0.05) göre arttı. Sonuç olarak, akut soğuk kısıtlama stresi, kısıtlama stresinden daha belirgin EKG değişikliğine neden olabilir.

Supporting Institution

TUBİTAK

Project Number

2209- A - Üniversite Öğrencileri Araştırma Projeleri

References

  • Algra A, Tijssen JG, Roelandt JR, Pool J, Lubsen J (1991) QTc prolongation measured by standard 12-lead electrocardiography is an independent risk factor for sudden death due to cardiac arrest. Circulation 83(6): 1888-94. https://doi.org/10.1161/01.cir.83.6.1888
  • Andrássy G (2009) [The effect of various stressors on the QT-interval and the T-wave]. Orv Hetil 150(10): 447-57. https://doi.org/10.1556/oh.2009.28537
  • Bali A, Jaggi AS (2015) Preclinical experimental stress studies: protocols, assessment and comparison. Eur J Pharmacol 746: 282-92. https://doi.org/10.1016/j.ejphar.2014.10.017
  • Bhide A, Durgaprasad R, Kasala L, Velam V, Hulikal N (2016) Electrocardiographic changes during acute mental stress. Int J Med Sci Public Health 5(5): 835. https://doi.org/10.5455/ijmsph.2016.19082015137
  • Buynitsky T, Mostofsky DI (2009) Restraint stress in biobehavioral research: Recent developments. Neurosci Biobehav Rev 33(7): 1089-98. https://doi.org/10.1016/j.neubiorev.2009.05.004
  • Chen CW, Wu CH, Liou YS, Kuo KL, Chung CH, Lin YT, Kuo TBJ, Yang CCH (2021) Roles of cardiovascular autonomic regulation and sleep patterns in high blood pressure induced by mild cold exposure in rats. Hypertens Res 44(6): 662-673. https://doi.org/10.1038/s41440-021-00619-z
  • Crestani CC, Tavares RF, Alves FH, Resstel LB, Correa FM (2010) Effect of acute restraint stress on the tachycardiac and bradycardiac responses of the baroreflex in rats. Stress 13(1): 61-72. https://doi.org/10.3109/10253890902927950
  • El Marzouki H, Aboussaleh Y, Najimi M, Chigr F, Ahami A (2021) Effect of Cold Stress on Neurobehavioral and Physiological Parameters in Rats. Front Physiol 12: 660124. https://doi.org/10.3389/fphys.2021.660124
  • Ghalwash M, Elmasry A, Omar NMA (2021) Possible cardioprotective role of NaHS on ECG and oxidative stress markers in an unpredictable chronic mild stress model in rats. Can J Physiol Pharmacol 99(3): 321-327. https://doi.org/10.1139/cjpp-2019-0646
  • Hammoud S, Karam R, Mourad R, Saad I, Kurdi M (2018) Stress and Heart Rate Variability during University Final Examination among Lebanese Students. Behav Sci (Basel) 9(1). https://doi.org/10.3390/bs9010003
  • Herman JP, Ostrander MM, Mueller NK, Figueiredo H (2005) Limbic system mechanisms of stress regulation: hypothalamo-pituitary-adrenocortical axis. Prog Neuropsychopharmacol Biol Psychiatry 29(8): 1201-13. https://doi.org/10.1016/j.pnpbp.2005.08.006
  • Hintsala H, Kenttä TV, Tulppo M, Kiviniemi A, Huikuri HV, Mäntysaari M, Keinänen-Kiukaannemi S, Bloigu R, Herzig KH, Antikainen R, Rintamäki H, Jaakkola JJ, Ikäheimo TM (2014) Cardiac repolarization and autonomic regulation during short-term cold exposure in hypertensive men: an experimental study. PLoS One 9(7): e99973. https://doi.org/10.1371/journal.pone.0099973.
  • Konopelski P, Ufnal M (2016) Electrocardiography in rats: a comparison to human. Physiol Res 65(5): 717-725. https://doi.org/10.33549/physiolres.933270.
  • Liu J, Hakucho A, Liu X, Fujimiya T (2016) Acute restraint stress provokes sudden cardiac death in normotensive rats and enhances susceptibility to arrhythmogenic effects of adrenaline in spontaneously hypertensive rats. Leg Med (Tokyo) 21: 19-28. https://doi.org/10.1016/j.legalmed.2016.05.003.
  • Meneghini A, Ferreira C, Abreu LC, Ferreira M, Ferreira Filho C, Valenti VE, Murad N (2008) Cold stress effects on cardiomyocytes nuclear size in rats: light microscopic evaluation. Rev Bras Cir Cardiovasc 23(4): 530-3. https://doi.org/10.1590/s0102-76382008000400013
  • Papanek PE, Wood CE, Fregly MJ (1991) Role of the sympathetic nervous system in cold-induced hypertension in rats. J Appl Physiol (1985) 71(1): 300-6. https://doi.org/10.1152/jappl.1991.71.1.300
  • Park SE, Park D, Song KI, Seong JK, Chung S, Youn I (2017) Differential heart rate variability and physiological responses associated with accumulated short- and long-term stress in rodents. Physiol Behav 171: 21-31. https://doi.org/10.1016/j.physbeh.2016.12.036
  • Rozanski A, Bairey CN, Krantz DS, Friedman J, Resser KJ, Morell M, Hilton-Chalfen S, Hestrin L, Bietendorf J, Berman DS (1988) Mental stress and the induction of silent myocardial ischemia in patients with coronary artery disease. N Engl J Med 318(16): 1005-12. https://doi.org/10.1056/nejm198804213181601
  • Selye H (1973) The evolution of the stress concept. Am Sci 61(6): 692-9.
  • Shi S, Liang J, Liu T, Yuan X, Ruan B, Sun L, Tang Y, Yang B, Hu D, Huang C (2014) Depression increases sympathetic activity and exacerbates myocardial remodeling after myocardial infarction: evidence from an animal experiment. PLoS One 9(7): e101734. https://doi.org/10.1371/journal.pone.0101734 Tu BX, Wang LF, Zhong XL, Hu ZL, Cao WY, Cui YH, Li SJ, Zou GJ, Liu Y, Zhou SF, Zhang WJ, Su JZ, Yan XX, Li F, Li CQ (2019) Acute restraint stress alters food-foraging behavior in rats: Taking the easier Way while suffered. Brain Res Bull 149: 184-193. https://doi.org/10.1016/j.brainresbull.2019.04.021
  • Ueyama T, Yoshida K, Senba E (2000) Stress-induced elevation of the ST segment in the rat electrocardiogram is normalized by an adrenoceptor blocker. Clin Exp Pharmacol Physiol 27(5-6): 384-6. https://doi.org/10.1046/j.1440-1681.2000.03249.x
  • Varejkova E, Janisova K, Myslivecek J (2019) Acute restraint stress modifies the heart rate biorhythm in the poststress period. Sci Rep 9(1): 1794. https://doi.org/10.1038/s41598-019-38523-9
  • Viljoen M, Panzer A (2007) The central noradrenergic system: an overview. Afr J Psychiatry (Johannesbg) 10(3): 135-41. https://doi.org/10.4314/ajpsy.v10i3.30245
  • Wu S, Wong MC, Chen M, Cho CH, Wong TM (2004) Role of opioid receptors in cardioprotection of cold-restraint stress and morphine. J Biomed Sci 11(6): 726-31. https://doi.org/10.1007/bf02254356
  • Zhu D, Tong Q, Liu W, Tian M, Xie W, Ji L, Shi J (2014) Angiotensin (1-7) protects against stress-induced gastric lesions in rats. Biochem Pharmacol 87(3): 467-76. https://doi.org/10.1016/j.bcp.2013.10.

Electrocardiographic Evaluation of Acute Restraint and Cold Restraint Stress Response in Rats

Year 2023, , 8 - 12, 31.07.2023
https://doi.org/10.51755/turkvetj.1244382

Abstract

In this study, we investigated the effects of acute restraint stress and cold restraint stress on electrocardiographic (ECG) parameters in rats. A total of 18 male Wistar albino rats aged 8-10 weeks weighing 180-220 g were divided into three equal groups (n=6/group). No stressors were administered to the rats in the control group. The rats in the restraint group were kept in a restrainer for 2 hours. The rats in the cold restraint group were kept at +4°C for 2 hours in restrainer. ECG was recorded under ketamine and xylazine anesthesia in rats with the Televet II ECG device (Kruuse, Germany), and the Televet 100 program (version® 7.0.0, Kruuse, Heusenstamm, Germany) was used to analyze the leads II. There was no significant difference between the groups in the analysis of PR, QT, QRS intervals, and R-wave amplitude (p >0.05). However, the heart rate was significantly higher in the cold restraint group than in the control group (p <0.001) and restraint group (p <0.01). Conversely, the RR interval was significantly lower in the cold restraint group than in the control group (p <0.001) and restraint group (p <0.01). The QTc was increased in rats exposed to cold restraint stress compared to the control group (p <0.01) and restraint group (p <0.05). In conclusion, acute cold restraint stress may cause more pronounced ECG change than restraint stress.

Project Number

2209- A - Üniversite Öğrencileri Araştırma Projeleri

References

  • Algra A, Tijssen JG, Roelandt JR, Pool J, Lubsen J (1991) QTc prolongation measured by standard 12-lead electrocardiography is an independent risk factor for sudden death due to cardiac arrest. Circulation 83(6): 1888-94. https://doi.org/10.1161/01.cir.83.6.1888
  • Andrássy G (2009) [The effect of various stressors on the QT-interval and the T-wave]. Orv Hetil 150(10): 447-57. https://doi.org/10.1556/oh.2009.28537
  • Bali A, Jaggi AS (2015) Preclinical experimental stress studies: protocols, assessment and comparison. Eur J Pharmacol 746: 282-92. https://doi.org/10.1016/j.ejphar.2014.10.017
  • Bhide A, Durgaprasad R, Kasala L, Velam V, Hulikal N (2016) Electrocardiographic changes during acute mental stress. Int J Med Sci Public Health 5(5): 835. https://doi.org/10.5455/ijmsph.2016.19082015137
  • Buynitsky T, Mostofsky DI (2009) Restraint stress in biobehavioral research: Recent developments. Neurosci Biobehav Rev 33(7): 1089-98. https://doi.org/10.1016/j.neubiorev.2009.05.004
  • Chen CW, Wu CH, Liou YS, Kuo KL, Chung CH, Lin YT, Kuo TBJ, Yang CCH (2021) Roles of cardiovascular autonomic regulation and sleep patterns in high blood pressure induced by mild cold exposure in rats. Hypertens Res 44(6): 662-673. https://doi.org/10.1038/s41440-021-00619-z
  • Crestani CC, Tavares RF, Alves FH, Resstel LB, Correa FM (2010) Effect of acute restraint stress on the tachycardiac and bradycardiac responses of the baroreflex in rats. Stress 13(1): 61-72. https://doi.org/10.3109/10253890902927950
  • El Marzouki H, Aboussaleh Y, Najimi M, Chigr F, Ahami A (2021) Effect of Cold Stress on Neurobehavioral and Physiological Parameters in Rats. Front Physiol 12: 660124. https://doi.org/10.3389/fphys.2021.660124
  • Ghalwash M, Elmasry A, Omar NMA (2021) Possible cardioprotective role of NaHS on ECG and oxidative stress markers in an unpredictable chronic mild stress model in rats. Can J Physiol Pharmacol 99(3): 321-327. https://doi.org/10.1139/cjpp-2019-0646
  • Hammoud S, Karam R, Mourad R, Saad I, Kurdi M (2018) Stress and Heart Rate Variability during University Final Examination among Lebanese Students. Behav Sci (Basel) 9(1). https://doi.org/10.3390/bs9010003
  • Herman JP, Ostrander MM, Mueller NK, Figueiredo H (2005) Limbic system mechanisms of stress regulation: hypothalamo-pituitary-adrenocortical axis. Prog Neuropsychopharmacol Biol Psychiatry 29(8): 1201-13. https://doi.org/10.1016/j.pnpbp.2005.08.006
  • Hintsala H, Kenttä TV, Tulppo M, Kiviniemi A, Huikuri HV, Mäntysaari M, Keinänen-Kiukaannemi S, Bloigu R, Herzig KH, Antikainen R, Rintamäki H, Jaakkola JJ, Ikäheimo TM (2014) Cardiac repolarization and autonomic regulation during short-term cold exposure in hypertensive men: an experimental study. PLoS One 9(7): e99973. https://doi.org/10.1371/journal.pone.0099973.
  • Konopelski P, Ufnal M (2016) Electrocardiography in rats: a comparison to human. Physiol Res 65(5): 717-725. https://doi.org/10.33549/physiolres.933270.
  • Liu J, Hakucho A, Liu X, Fujimiya T (2016) Acute restraint stress provokes sudden cardiac death in normotensive rats and enhances susceptibility to arrhythmogenic effects of adrenaline in spontaneously hypertensive rats. Leg Med (Tokyo) 21: 19-28. https://doi.org/10.1016/j.legalmed.2016.05.003.
  • Meneghini A, Ferreira C, Abreu LC, Ferreira M, Ferreira Filho C, Valenti VE, Murad N (2008) Cold stress effects on cardiomyocytes nuclear size in rats: light microscopic evaluation. Rev Bras Cir Cardiovasc 23(4): 530-3. https://doi.org/10.1590/s0102-76382008000400013
  • Papanek PE, Wood CE, Fregly MJ (1991) Role of the sympathetic nervous system in cold-induced hypertension in rats. J Appl Physiol (1985) 71(1): 300-6. https://doi.org/10.1152/jappl.1991.71.1.300
  • Park SE, Park D, Song KI, Seong JK, Chung S, Youn I (2017) Differential heart rate variability and physiological responses associated with accumulated short- and long-term stress in rodents. Physiol Behav 171: 21-31. https://doi.org/10.1016/j.physbeh.2016.12.036
  • Rozanski A, Bairey CN, Krantz DS, Friedman J, Resser KJ, Morell M, Hilton-Chalfen S, Hestrin L, Bietendorf J, Berman DS (1988) Mental stress and the induction of silent myocardial ischemia in patients with coronary artery disease. N Engl J Med 318(16): 1005-12. https://doi.org/10.1056/nejm198804213181601
  • Selye H (1973) The evolution of the stress concept. Am Sci 61(6): 692-9.
  • Shi S, Liang J, Liu T, Yuan X, Ruan B, Sun L, Tang Y, Yang B, Hu D, Huang C (2014) Depression increases sympathetic activity and exacerbates myocardial remodeling after myocardial infarction: evidence from an animal experiment. PLoS One 9(7): e101734. https://doi.org/10.1371/journal.pone.0101734 Tu BX, Wang LF, Zhong XL, Hu ZL, Cao WY, Cui YH, Li SJ, Zou GJ, Liu Y, Zhou SF, Zhang WJ, Su JZ, Yan XX, Li F, Li CQ (2019) Acute restraint stress alters food-foraging behavior in rats: Taking the easier Way while suffered. Brain Res Bull 149: 184-193. https://doi.org/10.1016/j.brainresbull.2019.04.021
  • Ueyama T, Yoshida K, Senba E (2000) Stress-induced elevation of the ST segment in the rat electrocardiogram is normalized by an adrenoceptor blocker. Clin Exp Pharmacol Physiol 27(5-6): 384-6. https://doi.org/10.1046/j.1440-1681.2000.03249.x
  • Varejkova E, Janisova K, Myslivecek J (2019) Acute restraint stress modifies the heart rate biorhythm in the poststress period. Sci Rep 9(1): 1794. https://doi.org/10.1038/s41598-019-38523-9
  • Viljoen M, Panzer A (2007) The central noradrenergic system: an overview. Afr J Psychiatry (Johannesbg) 10(3): 135-41. https://doi.org/10.4314/ajpsy.v10i3.30245
  • Wu S, Wong MC, Chen M, Cho CH, Wong TM (2004) Role of opioid receptors in cardioprotection of cold-restraint stress and morphine. J Biomed Sci 11(6): 726-31. https://doi.org/10.1007/bf02254356
  • Zhu D, Tong Q, Liu W, Tian M, Xie W, Ji L, Shi J (2014) Angiotensin (1-7) protects against stress-induced gastric lesions in rats. Biochem Pharmacol 87(3): 467-76. https://doi.org/10.1016/j.bcp.2013.10.
There are 25 citations in total.

Details

Primary Language Turkish
Subjects Veterinary Anatomy and Physiology
Journal Section Research Article
Authors

Çağlasu Koç 0000-0002-2925-6849

Mehmet Ekici 0000-0002-2163-6214

Project Number 2209- A - Üniversite Öğrencileri Araştırma Projeleri
Early Pub Date July 28, 2023
Publication Date July 31, 2023
Published in Issue Year 2023

Cite

APA Koç, Ç., & Ekici, M. (2023). Sıçanlarda Akut Kısıtlama ve Soğuk Kısıtlama Stres Tepkisinin Elektrokardiyografik Değerlendirmesi. Turkish Veterinary Journal, 5(1), 8-12. https://doi.org/10.51755/turkvetj.1244382