Review
BibTex RIS Cite

Ana Hatları ile Ferroptozis

Year 2022, Volume: 4 Issue: 1, 24 - 27, 23.12.2022
https://doi.org/10.51755/turkvetj.1078397

Abstract

Ferroptozis, son yıllarda keşfedilen ve hücre ölümü sürecinde büyük miktarda demir birikimi ve lipid peroksidasyonunun görüldüğü, GPX4 tarafından kontrol edilen hücre ölümü biçimidir. Glutatyon peroksidaz doğrudan veya dolaylı olarak ferroptozisi etkileyerek antioksidan kapasitede azalmaya ve hücrelerde lipid reaktif oksijen türlerinin (ROS) birikmesine neden olarak oksidatif hücre ölümüne sebep olur. Çoklu doymamış yağ asidi içeren fosfolipidlerin oksidasyonu, redoks-aktif demir birikimi ve lipid peroksit onarım kapasitesinin kaybı ferroptozisin meydana gelme derecesinde kriter olarak kullanılır. Son zamanlarda yapılan çalışmalarla ferroptozisin; tümör, sinir sistemi ve kan hastalıkları, böbrek hasarı, iskemi-reperfüzyon hasarı gibi birçok hastalığın patofizyolojik süreçleri ile ilişkili olduğu gösterilmiştir. Hücrede ferroptozisin düzenlenerek hastalıkların oluşumuna ve gelişimine nasıl müdahale edilebileceği, etiyolojik araştırma ve tedavinin önemli noktası haline gelmiştir. Bundan dolayı ferroptozisin spesifik moleküler mekanizmalarının ve fonksiyonel değişikliklerinin açıklandığı daha fazla araştırmaya ihtiyaç vardır. Bu çalışma ferroptozis mekanizması ve patogenezinin anlaşılmasını amaçlayarak, araştırmalardaki son ilerlemeleri özetlemektedir.

References

  • Adedoyin, O., Boddu, R., Traylor, A., Lever, J. M., Bolisetty, S., George, J. F., & Agarwal, A. (2018). Heme oxygenase-1 mitigates ferroptosis in renal proximal tubule cells. American Journal of Physiology-Renal Physiology, 314(5), F702-F714.
  • Agrawal, S., Fox, J., Thyagarajan, B., & Fox, J. H. (2018). Brain mitochondrial iron accumulates in Huntington's disease, mediates mitochondrial dysfunction, and can be removed pharmacologically. Free Radical Biology and Medicine, 120, 317-329.
  • Ahmad, S., Elsherbiny, N. M., Haque, R., Khan, M. B., Ishrat, T., Shah, Z. A., ... & Bhatia, K. (2014). Sesamin attenuates neurotoxicity in mouse model of ischemic brain stroke. Neurotoxicology, 45, 100-110.
  • Alvarez, S. W., Sviderskiy, V. O., Terzi, E. M., Papagiannakopoulos, T., Moreira, A. L., Adams, S., ... & Possemato, R. (2017). NFS1 undergoes positive selection in lung tumours and protects cells from ferroptosis. Nature, 551(7682), 639-643.
  • Angeli, J. P. F., Schneider, M., Proneth, B., Tyurina, Y. Y., Tyurin, V. A., Hammond, V. J., ... & Conrad, M. (2014). Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice. Nature cell biology, 16(12), 1180-1191.
  • Bai, T., Lei, P., Zhou, H., Liang, R., Zhu, R., Wang, W., ... & Sun, Y. (2019). Sigma‐1 receptor protects against ferroptosis in hepatocellular carcinoma cells. Journal of cellular and molecular medicine, 23(11), 7349-7359.
  • Basit, F., Van Oppen, L. M., Schöckel, L., Bossenbroek, H. M., Van Emst-de Vries, S. E., Hermeling, J. C., ... & Koopman, W. J. (2017). Mitochondrial complex I inhibition triggers a mitophagy-dependent ROS increase leading to necroptosis and ferroptosis in melanoma cells. Cell Death & Disease, 8(3), e2716-e2716.
  • Basuli, D., Tesfay, L., Deng, Z., Paul, B., Yamamoto, Y., Ning, G., ... & Torti, S. V. (2017). Iron addiction: a novel therapeutic target in ovarian cancer. Oncogene, 36(29), 4089-4099.
  • Belavgeni, A., Bornstein, S. R., Von Mässenhausen, A., Tonnus, W., Stumpf, J., Meyer, C., ... & Linkermann, A. (2019). Exquisite sensitivity of adrenocortical carcinomas to induction of ferroptosis. Proceedings of the National Academy of Sciences, 116(44), 22269-22274.
  • Bersuker, K., Hendricks, J. M., Li, Z., Magtanong, L., Ford, B., Tang, P. H., ... & Olzmann, J. A. (2019). The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis. Nature, 575(7784), 688-692.
  • Bogdan, A. R., Miyazawa, M., Hashimoto, K., & Tsuji, Y. (2016). Regulators of iron homeostasis: new players in metabolism, cell death, and disease. Trends in biochemical sciences, 41(3), 274-286.
  • Chen, J., Marks, E., Lai, B., Zhang, Z., Duce, J. A., Lam, L. Q., ... & Fox, J. H. (2013). Iron accumulates in Huntington’s disease neurons: protection by deferoxamine. PloS one, 8(10), e77023.
  • Chen, M. S., Wang, S. F., Hsu, C. Y., Yin, P. H., Yeh, T. S., Lee, H. C., & Tseng, L. M. (2017). CHAC1 degradation of glutathione enhances cystine-starvation-induced necroptosis and ferroptosis in human triple negative breast cancer cells via the GCN2-eIF2α-ATF4 pathway. Oncotarget, 8(70), 114588.
  • Chu, B., Kon, N., Chen, D., Li, T., Liu, T., Jiang, L., ... & Gu, W. (2019). ALOX12 is required for p53-mediated tumour suppression through a distinct ferroptosis pathway. Nature cell biology, 21(5), 579-591.
  • Codazzi, F., Hu, A., Rai, M., Donatello, S., Salerno Scarzella, F., Mangiameli, E., ... & Pandolfo, M. (2016). Friedreich ataxia-induced pluripotent stem cell-derived neurons show a cellular phenotype that is corrected by a benzamide HDAC inhibitor. Human molecular genetics, 25(22), 4847-4855.
  • Delavallée, L., Mathiah, N., Cabon, L., Mazeraud, A., Brunelle-Navas, M. N., Lerner, L. K., ... & Susin, S. A. (2020). Mitochondrial AIF loss causes metabolic reprogramming, caspase-independent cell death blockade, embryonic lethality, and perinatal hydrocephalus. Molecular metabolism, 40, 101027.
  • Dietrich, R. B., & Bradley Jr, W. G. (1988). Iron accumulation in the basal ganglia following severe ischemic-anoxic insults in children. Radiology, 168(1), 203-206.
  • Dixon, S. J., Lemberg, K. M., Lamprecht, M. R., Skouta, R., Zaitsev, E. M., Gleason, C. E., ... & Stockwell, B. R. (2012). Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell, 149(5), 1060-1072.
  • Doll, S., Freitas, F. P., Shah, R., Aldrovandi, M., da Silva, M. C., Ingold, I., ... & Conrad, M. (2019). FSP1 is a glutathione-independent ferroptosis suppressor. Nature, 575(7784), 693-698.
  • Eling, N., Reuter, L., Hazin, J., Hamacher-Brady, A., & Brady, N. R. (2015). Identification of artesunate as a specific activator of ferroptosis in pancreatic cancer cells. Oncoscience, 2(5), 517.
  • Fang, X., Wang, H., Han, D., Xie, E., Yang, X., Wei, J., ... & Wang, F. (2019). Ferroptosis as a target for protection against cardiomyopathy. Proceedings of the National Academy of Sciences, 116(7), 2672-2680.
  • Feng, H., & Stockwell, B. R. (2018). Unsolved mysteries: How does lipid peroxidation cause ferroptosis?. PLoS Biology, 16(5), e2006203. Frazer, D. M., & Anderson, G. J. (2014). The regulation of iron transport. Biofactors, 40(2), 206-214.
  • Gammella, E., Recalcati, S., Rybinska, I., Buratti, P., & Cairo, G. (2015). Iron-induced damage in cardiomyopathy: oxidative-dependent and independent mechanisms. Oxidative medicine and cellular longevity, 2015.
  • Gao, M., Monian, P., Quadri, N., Ramasamy, R., & Jiang, X. (2015). Glutaminolysis and transferrin regulate ferroptosis. Molecular cell, 59(2), 298-308.
  • Greenshields, A. L., Shepherd, T. G., & Hoskin, D. W. (2017). Contribution of reactive oxygen species to ovarian cancer cell growth arrest and killing by the anti‐malarial drug artesunate. Molecular carcinogenesis, 56(1), 75-93.
  • Guo, J., Xu, B., Han, Q., Zhou, H., Xia, Y., Gong, C., ... & Wu, G. (2018). Ferroptosis: a novel anti-tumor action for cisplatin. Cancer research and treatment: official journal of Korean Cancer Association, 50(2), 445.
  • Hambright, W. S., Fonseca, R. S., Chen, L., Na, R., & Ran, Q. (2017). Ablation of ferroptosis regulator glutathione peroxidase 4 in forebrain neurons promotes cognitive impairment and neurodegeneration. Redox biology, 12, 8-17.
  • Hangauer, M. J., Viswanathan, V. S., Ryan, M. J., Bole, D., Eaton, J. K., Matov, A., ... & McManus, M. T. (2017). Drug-tolerant persister cancer cells are vulnerable to GPX4 inhibition. Nature, 551(7679), 247-250.
  • Hao, S., Yu, J., He, W., Huang, Q., Zhao, Y., Liang, B., ... & Shi, M. (2017). Cysteine dioxygenase 1 mediates erastin-induced ferroptosis in human gastric cancer cells. Neoplasia, 19(12), 1022-1032.
  • Hasegawa, M., Takahashi, H., Rajabi, H., Alam, M., Suzuki, Y., Yin, L., ... & Kufe, D. (2016). Functional interactions of the cystine/glutamate antiporter, CD44v and MUC1-C oncoprotein in triple-negative breast cancer cells. Oncotarget, 7(11), 11756.
  • Jiang, L., Kon, N., Li, T., Wang, S. J., Su, T., Hibshoosh, H., ... & Gu, W. (2015). Ferroptosis as a p53-mediated activity during tumour suppression. Nature, 520(7545), 57-62.
  • Kagan, V. E., Mao, G., Qu, F., Angeli, J. P. F., Doll, S., St Croix, C., ... & Bayır, H. (2017). Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis. Nature chemical biology, 13(1), 81-90.
  • Karuppagounder, S. S., Alin, L., Chen, Y., Brand, D., Bourassa, M. W., Dietrich, K., ... & Ratan, R. R. (2018). N‐acetylcysteine targets 5 lipoxygenase‐derived, toxic lipids and can synergize with prostaglandin E2 to inhibit ferroptosis and improve outcomes following hemorrhagic stroke in mice. Annals of neurology, 84(6), 854-872.
  • Kim, E. H., Shin, D., Lee, J., Jung, A. R., & Roh, J. L. (2018). CISD2 inhibition overcomes resistance to sulfasalazine-induced ferroptotic cell death in head and neck cancer. Cancer letters, 432, 180-190.
  • Klepac, N., Relja, M., Klepac, R., Hećimović, S., Babić, T., & Trkulja, V. (2007). Oxidative stress parameters in plasma of Huntington's disease patients, asymptomatic Huntington’s disease gene carriers and healthy subjects. Journal of neurology, 254(12), 1676-1683.
  • Kwan, J. Y., Jeong, S. Y., Van Gelderen, P., Deng, H. X., Quezado, M. M., Danielian, L. E., ... & Floeter, M. K. (2012). Iron accumulation in deep cortical layers accounts for MRI signal abnormalities in ALS: correlating 7 tesla MRI and pathology. PloS one, 7(4), e35241.
  • Lane, D. J., Ayton, S., & Bush, A. I. (2018). Iron and Alzheimer’s disease: an update on emerging mechanisms. Journal of Alzheimer's Disease, 64(s1), S379-S395.
  • Li, W., Feng, G., Gauthier, J. M., Lokshina, I., Higashikubo, R., Evans, S., ... & Kreisel, D. (2019). Ferroptotic cell death and TLR4/Trif signaling initiate neutrophil recruitment after heart transplantation. The Journal of clinical investigation, 129(6), 2293-2304.
  • Linkermann, A., Skouta, R., Himmerkus, N., Mulay, S. R., Dewitz, C., De Zen, F., ... & Krautwald, S. (2014). Synchronized renal tubular cell death involves ferroptosis. Proceedings of the National Academy of Sciences, 111(47), 16836-16841.
  • Louandre, C., Marcq, I., Bouhlal, H., Lachaier, E., Godin, C., Saidak, Z., ... & Galmiche, A. (2015). The retinoblastoma (Rb) protein regulates ferroptosis induced by sorafenib in human hepatocellular carcinoma cells. Cancer letters, 356(2), 971-977.
  • Luo, M., Wu, L., Zhang, K., Wang, H., Zhang, T., Gutierrez, L., ... & Yang, Y. (2018). miR-137 regulates ferroptosis by targeting glutamine transporter SLC1A5 in melanoma. Cell Death & Differentiation, 25(8), 1457-1472.
  • Martin-Sanchez, D., Ruiz-Andres, O., Poveda, J., Carrasco, S., Cannata-Ortiz, P., Sanchez-Niño, M. D., ... & Sanz, A. B. (2017). Ferroptosis, but not necroptosis, is important in nephrotoxic folic acid–induced AKI. Journal of the American Society of Nephrology, 28(1), 218-229.
  • Miess, H., Dankworth, B., Gouw, A. M., Rosenfeldt, M., Schmitz, W., Jiang, M., ... & Schulze, A. (2018). The glutathione redox system is essential to prevent ferroptosis caused by impaired lipid metabolism in clear cell renal cell carcinoma. Oncogene, 37(40), 5435-5450.
  • Nie, J., Lin, B., Zhou, M., Wu, L., & Zheng, T. (2018). Role of ferroptosis in hepatocellular carcinoma. Journal of cancer research and clinical oncology, 144(12), 2329-2337.
  • Ou, W., Mulik, R. S., Anwar, A., McDonald, J. G., He, X., & Corbin, I. R. (2017). Low-density lipoprotein docosahexaenoic acid nanoparticles induce ferroptotic cell death in hepatocellular carcinoma. Free Radical Biology and Medicine, 112, 597-607.
  • Ou, Y., Wang, S. J., Li, D., Chu, B., & Gu, W. (2016). Activation of SAT1 engages polyamine metabolism with p53-mediated ferroptotic responses. Proceedings of the National Academy of Sciences, 113(44), E6806-E6812.
  • Raven, E. P., Lu, P. H., Tishler, T. A., Heydari, P., & Bartzokis, G. (2013). Increased iron levels and decreased tissue integrity in hippocampus of Alzheimer's disease detected in vivo with magnetic resonance imaging. Journal of Alzheimer's Disease, 37(1), 127-136.
  • Skouta, R., Dixon, S. J., Wang, J., Dunn, D. E., Orman, M., Shimada, K., ... & Stockwell, B. R. (2014). Ferrostatins inhibit oxidative lipid damage and cell death in diverse disease models. Journal of the American Chemical Society, 136(12), 4551-4556. Stockwell, B. R., Angeli, J. P. F., Bayir, H., Bush, A. I., Conrad, M., Dixon, S. J., ... & Zhang, D. D. (2017). Ferroptosis: a regulated cell death nexus linking metabolism, redox biology, and disease. Cell, 171(2), 273-285.
  • Sun, X., Niu, X., Chen, R., He, W., Chen, D., Kang, R., & Tang, D. (2016). Metallothionein‐1G facilitates sorafenib resistance through inhibition of ferroptosis. Hepatology, 64(2), 488-500.
  • Tarangelo, A., Rodencal, J., Kim, J. T., Magtanong, L., Long, J. Z., & Dixon, S. J. (2022). Nucleotide biosynthesis links glutathione metabolism to ferroptosis sensitivity. Life Science Alliance, 5(4).
  • Viswanathan, V. S., Ryan, M. J., Dhruv, H. D., Gill, S., Eichhoff, O. M., Seashore-Ludlow, B., ... & Schreiber, S. L. (2017). Dependency of a therapy-resistant state of cancer cells on a lipid peroxidase pathway. Nature, 547(7664), 453-457.
  • Weiland, A., Wang, Y., Wu, W., Lan, X., Han, X., Li, Q., & Wang, J. (2019). Ferroptosis and its role in diverse brain diseases. Molecular neurobiology, 56(7), 4880-4893.
  • Wu, M., Xu, LG, Li, X., Zhai, Z. & Shu, HB AMID, apoptozu indükleyen faktör homolog mitokondri ile ilişkili bir protein, kaspazdan bağımsız apoptozu indükler. J. Biol. Kimya 277, 25617–25623 (2002).
  • Wu, Z., Geng, Y., Lu, X., Shi, Y., Wu, G., Zhang, M., ... & Yuan, J. (2019). Chaperone-mediated autophagy is involved in the execution of ferroptosis. Proceedings of the National Academy of Sciences, 116(8), 2996-3005.
  • Xie, B. S., Wang, Y. Q., Lin, Y., Mao, Q., Feng, J. F., Gao, G. Y., & Jiang, J. Y. (2019). Inhibition of ferroptosis attenuates tissue damage and improves long‐term outcomes after traumatic brain injury in mice. CNS neuroscience & therapeutics, 25(4), 465-475.
  • Xie, Y., Hou, W., Song, X., Yu, Y., Huang, J., Sun, X., ... & Tang, D. (2016). Ferroptosis: process and function. Cell Death & Differentiation, 23(3), 369-379.
  • Xie, Y., Zhu, S., Song, X., Sun, X., Fan, Y., Liu, J., ... & Tang, D. (2017). The tumor suppressor p53 limits ferroptosis by blocking DPP4 activity. Cell reports, 20(7), 1692-1704.
  • Yagoda, N., von Rechenberg, M., Zaganjor, E., Bauer, A. J., Yang, W. S., Fridman, D. J., ... & Stockwell, B. R. (2007). RAS–RAF–MEK-dependent oxidative cell death involving voltage-dependent anion channels. Nature, 447(7146), 865-869.
  • Yamaguchi, Y., Kasukabe, T., & Kumakura, S. (2018). Piperlongumine rapidly induces the death of human pancreatic cancer cells mainly through the induction of ferroptosis. International journal of oncology, 52(3), 1011-1022.
  • Yang, W. S., & Stockwell, B. R. (2016). Ferroptosis: death by lipid peroxidation. Trends in cell biology, 26(3), 165-176.
  • Yang, W. S., SriRamaratnam, R., Welsch, M. E., Shimada, K., Skouta, R., Viswanathan, V. S., ... & Stockwell, B. R. (2014). Regulation of ferroptotic cancer cell death by GPX4. Cell, 156(1-2), 317-331.
  • Yao, C., Johnson, W. M., Gao, Y., Wang, W., Zhang, J., Deak, M., ... & Chen, S. G. (2013). Kinase inhibitors arrest neurodegeneration in cell and C. elegans models of LRRK2 toxicity. Human molecular genetics, 22(2), 328-344.
  • Yuan, H., Li, X., Zhang, X., Kang, R., & Tang, D. (2016). CISD1 inhibits ferroptosis by protection against mitochondrial lipid peroxidation. Biochemical and biophysical research communications, 478(2), 838-844.
  • Zhang, Z., Wu, Y., Yuan, S., Zhang, P., Zhang, J., Li, H., ... & Chen, G. (2018). Glutathione peroxidase 4 participates in secondary brain injury through mediating ferroptosis in a rat model of intracerebral hemorrhage. Brain research, 1701, 112-125.

Ferroptosis with Outlines

Year 2022, Volume: 4 Issue: 1, 24 - 27, 23.12.2022
https://doi.org/10.51755/turkvetj.1078397

Abstract

Ferroptosis is a form of cell death controlled by GPX4, discovered in recent years, in which a large accumulation of iron and lipid peroxidation is observed in the process of cell death. Glutathione peroxidase directly or indirectly affects ferroptosis, causing a decrease in antioxidant capacity and the accumulation of lipid reactive oxygen species (ROS) in cells, resulting in oxidative cell death. Oxidation of phospholipids containing polyunsaturated fatty acids, accumulation of redox-active iron and loss of lipid peroxide repair capacity are used as criteria for the degree of occurrence of ferroptosis. Recent studies have shown that ferroptosis is associated with the pathophysiological processes of many diseases, such as tumors, diseases of the nervous system and blood, kidney damage, ischemia-reperfusion injury. How ferroptosis can be regulated in the cell and interfere with the formation and development of diseases has become an important point of etiological research and treatment. Therefore, further research is needed in which the specific molecular mechanisms and functional changes of ferroptosis are explained. This study aims to understand the mechanism and pathogenesis of ferroptosis and summarizes the recent advances in research.

References

  • Adedoyin, O., Boddu, R., Traylor, A., Lever, J. M., Bolisetty, S., George, J. F., & Agarwal, A. (2018). Heme oxygenase-1 mitigates ferroptosis in renal proximal tubule cells. American Journal of Physiology-Renal Physiology, 314(5), F702-F714.
  • Agrawal, S., Fox, J., Thyagarajan, B., & Fox, J. H. (2018). Brain mitochondrial iron accumulates in Huntington's disease, mediates mitochondrial dysfunction, and can be removed pharmacologically. Free Radical Biology and Medicine, 120, 317-329.
  • Ahmad, S., Elsherbiny, N. M., Haque, R., Khan, M. B., Ishrat, T., Shah, Z. A., ... & Bhatia, K. (2014). Sesamin attenuates neurotoxicity in mouse model of ischemic brain stroke. Neurotoxicology, 45, 100-110.
  • Alvarez, S. W., Sviderskiy, V. O., Terzi, E. M., Papagiannakopoulos, T., Moreira, A. L., Adams, S., ... & Possemato, R. (2017). NFS1 undergoes positive selection in lung tumours and protects cells from ferroptosis. Nature, 551(7682), 639-643.
  • Angeli, J. P. F., Schneider, M., Proneth, B., Tyurina, Y. Y., Tyurin, V. A., Hammond, V. J., ... & Conrad, M. (2014). Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice. Nature cell biology, 16(12), 1180-1191.
  • Bai, T., Lei, P., Zhou, H., Liang, R., Zhu, R., Wang, W., ... & Sun, Y. (2019). Sigma‐1 receptor protects against ferroptosis in hepatocellular carcinoma cells. Journal of cellular and molecular medicine, 23(11), 7349-7359.
  • Basit, F., Van Oppen, L. M., Schöckel, L., Bossenbroek, H. M., Van Emst-de Vries, S. E., Hermeling, J. C., ... & Koopman, W. J. (2017). Mitochondrial complex I inhibition triggers a mitophagy-dependent ROS increase leading to necroptosis and ferroptosis in melanoma cells. Cell Death & Disease, 8(3), e2716-e2716.
  • Basuli, D., Tesfay, L., Deng, Z., Paul, B., Yamamoto, Y., Ning, G., ... & Torti, S. V. (2017). Iron addiction: a novel therapeutic target in ovarian cancer. Oncogene, 36(29), 4089-4099.
  • Belavgeni, A., Bornstein, S. R., Von Mässenhausen, A., Tonnus, W., Stumpf, J., Meyer, C., ... & Linkermann, A. (2019). Exquisite sensitivity of adrenocortical carcinomas to induction of ferroptosis. Proceedings of the National Academy of Sciences, 116(44), 22269-22274.
  • Bersuker, K., Hendricks, J. M., Li, Z., Magtanong, L., Ford, B., Tang, P. H., ... & Olzmann, J. A. (2019). The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis. Nature, 575(7784), 688-692.
  • Bogdan, A. R., Miyazawa, M., Hashimoto, K., & Tsuji, Y. (2016). Regulators of iron homeostasis: new players in metabolism, cell death, and disease. Trends in biochemical sciences, 41(3), 274-286.
  • Chen, J., Marks, E., Lai, B., Zhang, Z., Duce, J. A., Lam, L. Q., ... & Fox, J. H. (2013). Iron accumulates in Huntington’s disease neurons: protection by deferoxamine. PloS one, 8(10), e77023.
  • Chen, M. S., Wang, S. F., Hsu, C. Y., Yin, P. H., Yeh, T. S., Lee, H. C., & Tseng, L. M. (2017). CHAC1 degradation of glutathione enhances cystine-starvation-induced necroptosis and ferroptosis in human triple negative breast cancer cells via the GCN2-eIF2α-ATF4 pathway. Oncotarget, 8(70), 114588.
  • Chu, B., Kon, N., Chen, D., Li, T., Liu, T., Jiang, L., ... & Gu, W. (2019). ALOX12 is required for p53-mediated tumour suppression through a distinct ferroptosis pathway. Nature cell biology, 21(5), 579-591.
  • Codazzi, F., Hu, A., Rai, M., Donatello, S., Salerno Scarzella, F., Mangiameli, E., ... & Pandolfo, M. (2016). Friedreich ataxia-induced pluripotent stem cell-derived neurons show a cellular phenotype that is corrected by a benzamide HDAC inhibitor. Human molecular genetics, 25(22), 4847-4855.
  • Delavallée, L., Mathiah, N., Cabon, L., Mazeraud, A., Brunelle-Navas, M. N., Lerner, L. K., ... & Susin, S. A. (2020). Mitochondrial AIF loss causes metabolic reprogramming, caspase-independent cell death blockade, embryonic lethality, and perinatal hydrocephalus. Molecular metabolism, 40, 101027.
  • Dietrich, R. B., & Bradley Jr, W. G. (1988). Iron accumulation in the basal ganglia following severe ischemic-anoxic insults in children. Radiology, 168(1), 203-206.
  • Dixon, S. J., Lemberg, K. M., Lamprecht, M. R., Skouta, R., Zaitsev, E. M., Gleason, C. E., ... & Stockwell, B. R. (2012). Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell, 149(5), 1060-1072.
  • Doll, S., Freitas, F. P., Shah, R., Aldrovandi, M., da Silva, M. C., Ingold, I., ... & Conrad, M. (2019). FSP1 is a glutathione-independent ferroptosis suppressor. Nature, 575(7784), 693-698.
  • Eling, N., Reuter, L., Hazin, J., Hamacher-Brady, A., & Brady, N. R. (2015). Identification of artesunate as a specific activator of ferroptosis in pancreatic cancer cells. Oncoscience, 2(5), 517.
  • Fang, X., Wang, H., Han, D., Xie, E., Yang, X., Wei, J., ... & Wang, F. (2019). Ferroptosis as a target for protection against cardiomyopathy. Proceedings of the National Academy of Sciences, 116(7), 2672-2680.
  • Feng, H., & Stockwell, B. R. (2018). Unsolved mysteries: How does lipid peroxidation cause ferroptosis?. PLoS Biology, 16(5), e2006203. Frazer, D. M., & Anderson, G. J. (2014). The regulation of iron transport. Biofactors, 40(2), 206-214.
  • Gammella, E., Recalcati, S., Rybinska, I., Buratti, P., & Cairo, G. (2015). Iron-induced damage in cardiomyopathy: oxidative-dependent and independent mechanisms. Oxidative medicine and cellular longevity, 2015.
  • Gao, M., Monian, P., Quadri, N., Ramasamy, R., & Jiang, X. (2015). Glutaminolysis and transferrin regulate ferroptosis. Molecular cell, 59(2), 298-308.
  • Greenshields, A. L., Shepherd, T. G., & Hoskin, D. W. (2017). Contribution of reactive oxygen species to ovarian cancer cell growth arrest and killing by the anti‐malarial drug artesunate. Molecular carcinogenesis, 56(1), 75-93.
  • Guo, J., Xu, B., Han, Q., Zhou, H., Xia, Y., Gong, C., ... & Wu, G. (2018). Ferroptosis: a novel anti-tumor action for cisplatin. Cancer research and treatment: official journal of Korean Cancer Association, 50(2), 445.
  • Hambright, W. S., Fonseca, R. S., Chen, L., Na, R., & Ran, Q. (2017). Ablation of ferroptosis regulator glutathione peroxidase 4 in forebrain neurons promotes cognitive impairment and neurodegeneration. Redox biology, 12, 8-17.
  • Hangauer, M. J., Viswanathan, V. S., Ryan, M. J., Bole, D., Eaton, J. K., Matov, A., ... & McManus, M. T. (2017). Drug-tolerant persister cancer cells are vulnerable to GPX4 inhibition. Nature, 551(7679), 247-250.
  • Hao, S., Yu, J., He, W., Huang, Q., Zhao, Y., Liang, B., ... & Shi, M. (2017). Cysteine dioxygenase 1 mediates erastin-induced ferroptosis in human gastric cancer cells. Neoplasia, 19(12), 1022-1032.
  • Hasegawa, M., Takahashi, H., Rajabi, H., Alam, M., Suzuki, Y., Yin, L., ... & Kufe, D. (2016). Functional interactions of the cystine/glutamate antiporter, CD44v and MUC1-C oncoprotein in triple-negative breast cancer cells. Oncotarget, 7(11), 11756.
  • Jiang, L., Kon, N., Li, T., Wang, S. J., Su, T., Hibshoosh, H., ... & Gu, W. (2015). Ferroptosis as a p53-mediated activity during tumour suppression. Nature, 520(7545), 57-62.
  • Kagan, V. E., Mao, G., Qu, F., Angeli, J. P. F., Doll, S., St Croix, C., ... & Bayır, H. (2017). Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis. Nature chemical biology, 13(1), 81-90.
  • Karuppagounder, S. S., Alin, L., Chen, Y., Brand, D., Bourassa, M. W., Dietrich, K., ... & Ratan, R. R. (2018). N‐acetylcysteine targets 5 lipoxygenase‐derived, toxic lipids and can synergize with prostaglandin E2 to inhibit ferroptosis and improve outcomes following hemorrhagic stroke in mice. Annals of neurology, 84(6), 854-872.
  • Kim, E. H., Shin, D., Lee, J., Jung, A. R., & Roh, J. L. (2018). CISD2 inhibition overcomes resistance to sulfasalazine-induced ferroptotic cell death in head and neck cancer. Cancer letters, 432, 180-190.
  • Klepac, N., Relja, M., Klepac, R., Hećimović, S., Babić, T., & Trkulja, V. (2007). Oxidative stress parameters in plasma of Huntington's disease patients, asymptomatic Huntington’s disease gene carriers and healthy subjects. Journal of neurology, 254(12), 1676-1683.
  • Kwan, J. Y., Jeong, S. Y., Van Gelderen, P., Deng, H. X., Quezado, M. M., Danielian, L. E., ... & Floeter, M. K. (2012). Iron accumulation in deep cortical layers accounts for MRI signal abnormalities in ALS: correlating 7 tesla MRI and pathology. PloS one, 7(4), e35241.
  • Lane, D. J., Ayton, S., & Bush, A. I. (2018). Iron and Alzheimer’s disease: an update on emerging mechanisms. Journal of Alzheimer's Disease, 64(s1), S379-S395.
  • Li, W., Feng, G., Gauthier, J. M., Lokshina, I., Higashikubo, R., Evans, S., ... & Kreisel, D. (2019). Ferroptotic cell death and TLR4/Trif signaling initiate neutrophil recruitment after heart transplantation. The Journal of clinical investigation, 129(6), 2293-2304.
  • Linkermann, A., Skouta, R., Himmerkus, N., Mulay, S. R., Dewitz, C., De Zen, F., ... & Krautwald, S. (2014). Synchronized renal tubular cell death involves ferroptosis. Proceedings of the National Academy of Sciences, 111(47), 16836-16841.
  • Louandre, C., Marcq, I., Bouhlal, H., Lachaier, E., Godin, C., Saidak, Z., ... & Galmiche, A. (2015). The retinoblastoma (Rb) protein regulates ferroptosis induced by sorafenib in human hepatocellular carcinoma cells. Cancer letters, 356(2), 971-977.
  • Luo, M., Wu, L., Zhang, K., Wang, H., Zhang, T., Gutierrez, L., ... & Yang, Y. (2018). miR-137 regulates ferroptosis by targeting glutamine transporter SLC1A5 in melanoma. Cell Death & Differentiation, 25(8), 1457-1472.
  • Martin-Sanchez, D., Ruiz-Andres, O., Poveda, J., Carrasco, S., Cannata-Ortiz, P., Sanchez-Niño, M. D., ... & Sanz, A. B. (2017). Ferroptosis, but not necroptosis, is important in nephrotoxic folic acid–induced AKI. Journal of the American Society of Nephrology, 28(1), 218-229.
  • Miess, H., Dankworth, B., Gouw, A. M., Rosenfeldt, M., Schmitz, W., Jiang, M., ... & Schulze, A. (2018). The glutathione redox system is essential to prevent ferroptosis caused by impaired lipid metabolism in clear cell renal cell carcinoma. Oncogene, 37(40), 5435-5450.
  • Nie, J., Lin, B., Zhou, M., Wu, L., & Zheng, T. (2018). Role of ferroptosis in hepatocellular carcinoma. Journal of cancer research and clinical oncology, 144(12), 2329-2337.
  • Ou, W., Mulik, R. S., Anwar, A., McDonald, J. G., He, X., & Corbin, I. R. (2017). Low-density lipoprotein docosahexaenoic acid nanoparticles induce ferroptotic cell death in hepatocellular carcinoma. Free Radical Biology and Medicine, 112, 597-607.
  • Ou, Y., Wang, S. J., Li, D., Chu, B., & Gu, W. (2016). Activation of SAT1 engages polyamine metabolism with p53-mediated ferroptotic responses. Proceedings of the National Academy of Sciences, 113(44), E6806-E6812.
  • Raven, E. P., Lu, P. H., Tishler, T. A., Heydari, P., & Bartzokis, G. (2013). Increased iron levels and decreased tissue integrity in hippocampus of Alzheimer's disease detected in vivo with magnetic resonance imaging. Journal of Alzheimer's Disease, 37(1), 127-136.
  • Skouta, R., Dixon, S. J., Wang, J., Dunn, D. E., Orman, M., Shimada, K., ... & Stockwell, B. R. (2014). Ferrostatins inhibit oxidative lipid damage and cell death in diverse disease models. Journal of the American Chemical Society, 136(12), 4551-4556. Stockwell, B. R., Angeli, J. P. F., Bayir, H., Bush, A. I., Conrad, M., Dixon, S. J., ... & Zhang, D. D. (2017). Ferroptosis: a regulated cell death nexus linking metabolism, redox biology, and disease. Cell, 171(2), 273-285.
  • Sun, X., Niu, X., Chen, R., He, W., Chen, D., Kang, R., & Tang, D. (2016). Metallothionein‐1G facilitates sorafenib resistance through inhibition of ferroptosis. Hepatology, 64(2), 488-500.
  • Tarangelo, A., Rodencal, J., Kim, J. T., Magtanong, L., Long, J. Z., & Dixon, S. J. (2022). Nucleotide biosynthesis links glutathione metabolism to ferroptosis sensitivity. Life Science Alliance, 5(4).
  • Viswanathan, V. S., Ryan, M. J., Dhruv, H. D., Gill, S., Eichhoff, O. M., Seashore-Ludlow, B., ... & Schreiber, S. L. (2017). Dependency of a therapy-resistant state of cancer cells on a lipid peroxidase pathway. Nature, 547(7664), 453-457.
  • Weiland, A., Wang, Y., Wu, W., Lan, X., Han, X., Li, Q., & Wang, J. (2019). Ferroptosis and its role in diverse brain diseases. Molecular neurobiology, 56(7), 4880-4893.
  • Wu, M., Xu, LG, Li, X., Zhai, Z. & Shu, HB AMID, apoptozu indükleyen faktör homolog mitokondri ile ilişkili bir protein, kaspazdan bağımsız apoptozu indükler. J. Biol. Kimya 277, 25617–25623 (2002).
  • Wu, Z., Geng, Y., Lu, X., Shi, Y., Wu, G., Zhang, M., ... & Yuan, J. (2019). Chaperone-mediated autophagy is involved in the execution of ferroptosis. Proceedings of the National Academy of Sciences, 116(8), 2996-3005.
  • Xie, B. S., Wang, Y. Q., Lin, Y., Mao, Q., Feng, J. F., Gao, G. Y., & Jiang, J. Y. (2019). Inhibition of ferroptosis attenuates tissue damage and improves long‐term outcomes after traumatic brain injury in mice. CNS neuroscience & therapeutics, 25(4), 465-475.
  • Xie, Y., Hou, W., Song, X., Yu, Y., Huang, J., Sun, X., ... & Tang, D. (2016). Ferroptosis: process and function. Cell Death & Differentiation, 23(3), 369-379.
  • Xie, Y., Zhu, S., Song, X., Sun, X., Fan, Y., Liu, J., ... & Tang, D. (2017). The tumor suppressor p53 limits ferroptosis by blocking DPP4 activity. Cell reports, 20(7), 1692-1704.
  • Yagoda, N., von Rechenberg, M., Zaganjor, E., Bauer, A. J., Yang, W. S., Fridman, D. J., ... & Stockwell, B. R. (2007). RAS–RAF–MEK-dependent oxidative cell death involving voltage-dependent anion channels. Nature, 447(7146), 865-869.
  • Yamaguchi, Y., Kasukabe, T., & Kumakura, S. (2018). Piperlongumine rapidly induces the death of human pancreatic cancer cells mainly through the induction of ferroptosis. International journal of oncology, 52(3), 1011-1022.
  • Yang, W. S., & Stockwell, B. R. (2016). Ferroptosis: death by lipid peroxidation. Trends in cell biology, 26(3), 165-176.
  • Yang, W. S., SriRamaratnam, R., Welsch, M. E., Shimada, K., Skouta, R., Viswanathan, V. S., ... & Stockwell, B. R. (2014). Regulation of ferroptotic cancer cell death by GPX4. Cell, 156(1-2), 317-331.
  • Yao, C., Johnson, W. M., Gao, Y., Wang, W., Zhang, J., Deak, M., ... & Chen, S. G. (2013). Kinase inhibitors arrest neurodegeneration in cell and C. elegans models of LRRK2 toxicity. Human molecular genetics, 22(2), 328-344.
  • Yuan, H., Li, X., Zhang, X., Kang, R., & Tang, D. (2016). CISD1 inhibits ferroptosis by protection against mitochondrial lipid peroxidation. Biochemical and biophysical research communications, 478(2), 838-844.
  • Zhang, Z., Wu, Y., Yuan, S., Zhang, P., Zhang, J., Li, H., ... & Chen, G. (2018). Glutathione peroxidase 4 participates in secondary brain injury through mediating ferroptosis in a rat model of intracerebral hemorrhage. Brain research, 1701, 112-125.
There are 64 citations in total.

Details

Primary Language Turkish
Subjects Veterinary Surgery
Journal Section Review
Authors

Arzu Gezer 0000-0002-1658-2098

Ebru Karadağ Sarı 0000-0001-7581-6109

Early Pub Date December 24, 2022
Publication Date December 23, 2022
Published in Issue Year 2022Volume: 4 Issue: 1

Cite

APA Gezer, A., & Karadağ Sarı, E. (2022). Ana Hatları ile Ferroptozis. Turkish Veterinary Journal, 4(1), 24-27. https://doi.org/10.51755/turkvetj.1078397