Review
BibTex RIS Cite

Extended Spectrum Beta-Lactamase (ESBL) Producing Escherichia coli and Its Public Health Significance

Year 2025, Volume: 7 Issue: 2, 78 - 86, 29.12.2025
https://doi.org/10.51755/turkvetj.1697519

Abstract

A member of the Enterobacteriaceae family, Escherichia coli (E. coli) is a significant microorganism both food safety and human health. E. coli is used as an indicator microorganism for monitoring antibiotic resistance because it occurs in the intestines in both people and farm animals as a commensal organism. The presence of E. coli in food is considered an important indicator of fecal contamination. E. coli can cause various infections in humans, including enteritis, urinary tract infections, septicemia, and neonatal meningitis. Various antibiotics are used to treat E. coli infections, with β-lactam antibiotics (penicillins, cephalosporins, carbapenems, and monobactams) being widely employed. The extensive use of β-lactam antibiotics has led to the emergence and spread of β-lactam resistance. Extended-Spectrum β-Lactamases (ESBLs) are particularly prevalent in E. coli and Klebsiella pneumoniae (K. pneumoniae). ESBLs can be transmitted through different routes, including hospital environments, person-to-person contact, animal-to-human transmission, consumption of contaminated food, and fecal-contaminated water. E. coli strains producing ESBLs often exhibit multidrug resistance, complicating the treatment of infections in clinical settings. Therefore, this review evaluated the presence of ESBL producing E. coli in animal derived foods, their antimicrobial resistance status, and the potential public health risks. The necessity of continuing efforts to limit antimicrobial use to prevent the spread of resistance to β-lactams, fluoroquinolones, and macrolides in E. coli. Given the risk of ESBL-producing E. coli spreading to humans through the food chain, monitoring these bacteria in food-producing animals is crucial for public health protection. Within the One Health framework, ESBL-producing E. coli should be evaluated holistically from human, animal, and environmental perspectives. Considering the risk of transmission along the food chain, monitoring animal-derived foods is critically important for public health. In combating antimicrobial resistance, a multidisciplinary collaboration, particularly between veterinary and human medicine, along with controlled antibiotic use, is of great significance.

References

  • Abushaheen, M. A., Fatani, A. J., Alosaimi, M., Mansy, W., George, M., Acharya, S., ... & Jhugroo, P. (2020). Antimicrobial resistance, mechanisms and its clinical significance. Disease-a-Month, 66(6), 100971. https://doi.org/10.1016/j.disamonth.2020.100971
  • Ahad, A., Salman, M., Ikram, A., Ashraf, Z., Amir, A., Saeed, A., & Ahmad, A. (2020). Prevalence and molecular characterization of ESBL-producing Escherichia coli in wastewater samples from Pakistan. International Journal of Infectious Diseases, 101, 33. https://doi.org/10.1016/j.ijid.2020.09.119
  • Alegría, Á., Arias-Temprano, M., Fernández-Natal, I., Rodríguez-Calleja, J. M., García-López, M. L., & Santos, J. A. (2020). Molecular diversity of ESBL-producing Escherichia coli from foods of animal origin and human patients. International Journal of Environmental Research and Public Health, 17(4), 1312. https://doi.org/10.3390/ijerph17041312
  • Ambler, R. P. 1980. “The structure of β-lactamases”, Philosophical Transactions of the Royal Society of London B Biological Sciences, 289, 321–31.
  • Bergšpica, I., Kaprou, G., Alexa, E. A., Prieto, M., & Alvarez-Ordóñez, A. (2020). Extended spectrum β-lactamase (ESBL) producing Escherichia coli in pigs and pork meat in the European Union. Antibiotics, 9(10), 678. https://doi.org/10.3390/antibiotics9100678
  • Bonnet, R., Sampaio, J. L. M., Chanal, C., Sirot, D., De Champs, C., Viallard, J. L., & Sirot, J. (2000). A novel class A extended-spectrum β-lactamase (BES-1) in Serratia marcescens isolated in Brazil. Antimicrobial Agents and Chemotherapy, 44(11), 3061-3068. https://doi.org/10.1128/aac.44.11.3061-3068.2000
  • Bush, K. (2018). Past and present perspectives on β-lactamases. Antimicrobial Agents and Chemotherapy, 62(10), e01076-18. https://doi.org/10.1128/AAC.01076-18
  • Bush, K., & Bradford, P. A. (2020). Epidemiology of β-lactamase-producing pathogens. Clinical Microbiology Reviews, 33(2), 10-1128. https://doi.org/10.1128/CMR.00047-19
  • Bush, K., Jacoby J. A. 2010. “Updated functional classification of betalactamases”, Antimicrobial Agents and Chemotherapy, 54 (3), 969-976.
  • Bush, K., Jacoby, GA. Medeiros, A. A. 1995. “A functional classification scheme for β-lactamases and its correlation with molecular structure”, Antimicrobial Agents and Chemotherapy, 39 (6),1211-33.
  • Centers for Disease Control and Prevention. (2022). Antimicrobial resistance threats in the United States, 2021-2022. U.S. Department of Health and Human Services. https://www.cdc.gov/antimicrobial-resistance/data-research/threats/update-2022.html
  • Centers for Disease Control and Prevention. (2024). Antimicrobial resistance: Causes. https://www.cdc.gov/antimicrobial-resistance/causes/index.html
  • Cloutier, M. J. (1995). Antibiotics: Mechanisms of action and acquisition of resistance-When magic bullets lose their magic. American Journal of Pharmaceutical Education, 59(2), 167-172.
  • Çil, G. İ., Cengiz, G., Arslan, B., & Şireli, U. T. (2020). Tavuk eti örneklerinde genişlemiş spektrumlu β-laktamaz üreten Escherichia coli suşlarının belirlenmesi. Eurasian Journal of Veterinary Sciences, 36(3). https://doi.org/10.15312/EurasianJVetSci.2020.277
  • Dağlar, D., & Öngüt, G. (2012). Genişlemiş spektrumlu beta-laktamazlar (GSBL) ve tanı yöntemleri. Annals of Health Sciences Research, 1(1), 1–9.
  • Danish Integrated Antimicrobial Resistance Monitoring and Research Programme (DANMAP). (2023). Use of antimicrobial agents and occurrence of antimicrobial resistance in bacteria from food animals, food and humans in Denmark. National Food Institute, Technical University of Denmark & Statens Serum Institut. https://www.danmap.org
  • De Angelis, G., Del Giacomo, P., Posteraro, B., Sanguinetti, M., & Tumbarello, M. (2020). Molecular mechanisms, epidemiology, and clinical importance of β-lactam resistance in Enterobacteriaceae. International Journal of Molecular Sciences, 21(14), 5090. https://doi.org/10.3390/ijms21145090.
  • De Koster, S., Ringenier, M., Xavier, B. B., Lammens, C., De Coninck, D., De Bruyne, K., … i-4-1-Health Study Group. (2023). Genetic characterization of ESBL-producing and ciprofloxacin-resistant Escherichia coli from Belgian broilers and pigs. Frontiers in Microbiology, 14, 1150470. https://doi.org/10.3389/fmicb.2023.1150470
  • Doi, Y., Paterson, D. L., Egea, P., Pascual, A., López-Cerero, L., Navarro, M. D., … Rodríguez-Baño, J. (2010). Extended-spectrum and CMY-type β-lactamase-producing Escherichia coli in clinical samples and retail meat from Pittsburgh, USA and Seville, Spain. Clinical Microbiology and Infection, 16(1), 33-38. https://doi.org/10.1111/j.1469-0691.2009.03001.x
  • Dolar, A. (2015). Kafes kuşlarında genişlemiş spektrumlu β-laktamaz sentezleyen Escherichia coli varlığının araştırılması (Yüksek lisans tezi). Hatay Mustafa Kemal Üniversitesi, Hatay.
  • European Commission (EC). (2020). Commission Implementing Decision (EU) 2020/1729 of 17 November 2020 on the monitoring and reporting of antimicrobial resistance in zoonotic and commensal bacteria and repealing Implementing Decision 2013/652/EU. Official Journal of the European Union. https://eurlex.europa.eu/eli/dec_impl/2020/1729/oj
  • European Food Safety Authority (EFSA), & European Centre for Disease Prevention and Control (ECDC). (2024). The European Union summary report on antimicrobial resistance in zoonotic and indicator bacteria from humans, animals and food in 2021-2022. EFSA Journal, 22(2), e8583.
  • Ewers, C., De Jong, A., Prenger-Berninghoff, E., El Garch, F., Leidner, U., Tiwari, S. K., & Semmler, T. (2021). Genomic diversity and virulence potential of ESBL- and AmpC-β-lactamase-producing Escherichia coli strains from healthy food animals across Europe. Frontiers in Microbiology, 12, 626774. https://doi.org/10.3389/fmicb.2021.626774
  • Falodun, O. I., Rabiu, A. G., Marcus, A. J., Dada, R. A., & Afolabi, M. C. (n.d.). Characterization of virulent Escherichia coli in healthy pet dog feces: Implications for public health. Journal of Istanbul Veterinary Sciences, 8(1), 5–12.
  • Gelalcha, B. D., & Kerro Dego, O. (2022). Extended-spectrum beta-lactamases-producing Enterobacteriaceae in the USA dairy cattle farms and implications for public health. Antibiotics, 11(10), 1313. https://doi.org/10.3390/antibiotics11101313
  • Gelalcha, B. D., Mohammed, R. I., Gelgie, A. E., & Kerro Dego, O. (2023). Molecular epidemiology and pathogenomics of extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae isolates from bulk tank milk in Tennessee, USA. Frontiers in Microbiology, 14, 1283165. https://doi.org/10.3389/fmicb.2023.1283165
  • Gücükoğlu, A., Uyanik, T., Çadirci, Ö., Uğurtay, E., Kanat, S., & Bölükbaş, A. (2023). Determination of extended-spectrum β-lactamase-producing Enterobacteriaceae in raw water buffalo milk and dairy products by conventional multiplex and real-time PCR. International Dairy Journal, 140, 105581. https://doi.org/10.1016/j.idairyj.2022.105581
  • Gülmez, M. (2022). Antimikrobiyel direnç: Küresel bir sorun. Dicle Üniversitesi Veteriner Fakültesi Dergisi, 15(1), 53–58. https://doi.org/10.47027/duvetfd.1059497
  • Hawkey, P. M. (2015). Multidrug-resistant Gram-negative bacteria: A product of globalization. Journal of Hospital Infection, 89(4), 241–247. https://doi.org/10.1016/j.jhin.2015.01.008
  • Husan, O., & Çadirci, Ö. (2019). Determination of extended spectrum β‐lactamase producing Enterobacteriaceae from cheese samples sold in public bazaars. Journal of Food Safety, 39(5), e12680. https://doi.org/10.1111/jfs.12680
  • İnat, G., Sırıken, B., Çiftci, A., Erol, I., Başkan, C., & Yıldırım, T. (2023). Molecular characterization of extended-spectrum β-lactamase-producing Enterobacteriaceae species in ground beef and chicken meat. International Journal of Food Microbiology, 398, 110228. https://doi.org/10.1016/j.ijfoodmicro.2023.110228
  • Kaesbohrer, A., Bakran-Lebl, K., Irrgang, A., Fischer, J., Kämpf, P., Schiffmann, A., ... & Hille, K. (2019). Diversity in prevalence and characteristics of ESBL/pAmpC producing E. coli in food in Germany. Veterinary Microbiology, 233, 52-60. https://doi.org/10.1016/j.vetmic.2019.03.025
  • Kawamura, K., Nagano, N., Suzuki, M., Wachino, J. I., Kimura, K., & Arakawa, Y. (2017). ESBL-producing Escherichia coli and its rapid rise among healthy people. Food Safety, 5(4), 122-150. https://doi.org/10.14252/foodsafetyfscj.2017011
  • Kluytmans, J. A., Overdevest, I. T., Willemsen, I., Kluytmans-Van Den Bergh, M. F., Van Der Zwaluw, K., Heck, M., ... & Johnson, J. R. (2013). Extended-spectrum β-lactamase-producing Escherichia coli from retail chicken meat and humans: Comparison of strains, plasmids, resistance genes, and virulence factors. Clinical Infectious Diseases, 56(4), 478-487. https://doi.org/10.1093/cid/cis929
  • Kot, B. (2019). Antibiotic resistance among uropathogenic Escherichia coli. Polish Journal of Microbiology, 68(4), 403. https://doi.org/10.33073/pjm-2019-048
  • Kürekci, C., Arkadaş, M., & Avşar, Y. K. (2016). Occurrence, genetic characterization and antimicrobial resistance of extended spectrum β-lactamase producing Escherichia coli isolated from Sürk samples, a traditional Turkish cheese. Journal of Food Measurement and Characterization, 10, 709-714.
  • Kürekci, C., Aydin, M., Yipel, M., Katouli, M., & Gündoğdu, A. (2017). Characterization of extended spectrum β-lactamase (ESBL)-producing Escherichia coli in Asi (Orontes) River in Turkey. Journal of Water and Health, 15(5), 788-798. https://doi.org/10.2166/wh.2017.257
  • Kürekci, C., Osek, J., Aydın, M., Tekeli, İ. O., Kurpas, M., Wieczorek, K., & Sakin, F. (2019). Evaluation of bulk tank raw milk and raw chicken meat samples as source of ESBL producing Escherichia coli in Turkey: Recent insights. Journal of Food Safety, 39(2), e12605. https://doi.org/10.1111/jfs.12605
  • Livermore, D. M. (2008). Defining an extended-spectrum beta-lactamase. Clinical Microbiology and Infection, 14(Suppl 1), 3-10. https://doi.org/10.1111/j.1469-0691.2007.01857.x
  • Livermore, D. M., & Brown, D. F. (2001). Detection of β-lactamase-mediated resistance. Journal of Antimicrobial Chemotherapy, 48(Suppl 1), 59-64. https://doi.org/10.1093/jac/48.suppl_1.59
  • Michael, G. B., Kaspar, H., Siqueira, A. K., de Freitas Costa, E., Corbellini, L. G., Kadlec, K., & Schwarz, S. (2017). Extended-spectrum β-lactamase (ESBL)-producing Escherichia coli isolates collected from diseased food-producing animals in the GERM-Vet monitoring program 2008-2014. Veterinary Microbiology, 200, 142-150. https://doi.org/10.1016/j.vetmic.2016.08.023
  • Murray, C. J., Ikuta, K. S., Sharara, F., Swetschinski, L., Aguilar, G. R., Gray, A., ... & Tasak, N. (2022). Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. The Lancet, 399(10325), 629-655. https://doi.org/10.1016/S0140-6736(21)02724-0
  • Murray, P. R. (2024). Temel tıbbi mikrobiyoloji: Esaslar ve klinik olgular (A. D. Us & A. Başustaoğlu, Çev. Ed., 7. baskı, ss. 49-51). Güneş Tıp Kitabevleri
  • Nagshetty, K., Shilpa, B. M., Patil, S. A., Shivannavar, C. T., & Manjula, N. G. (2021). An overview of extended spectrum beta lactamases and metallo beta lactamases. Advances in Microbiology, 11(01), 37. https://doi.org/10.4236/aim.2021.111004
  • O’Neill, J. (2016). Tackling drug-resistant infections globally: Final report and recommendations. The Review on Antimicrobial Resistance. https://amr-review.org/sites/default/files/160518_Final%20paper_with%20cover.pdf
  • Ocak, F., Çifci, A., Cesur, S., & Kınıklı, S. (2019). Genişlemiş spektrumlu beta-laktamaz üreten E. coli izolatlarının çeşitli antibiyotiklere duyarlılıklarının belirlenmesi. Turkish Journal of Clinics and Laboratory, 10(3), 384-387. https://doi.org/10.18663/tjcl.605182
  • Öndeş, N., & Özpınar, H. (2016). Occurrence of ESBL-producing Enterobacteriaceae in red meat samples. Kafkas Üniversitesi Veteriner Fakültesi Dergisi, 22(1). https://doi.org/10.9775/kvfd.2015.13944
  • Özpınar, H., Tekiner, İ. H., Sarıcı, B., Çakmak, B., Gökalp, F., & Özadam, A. (2017). Phenotypic characterization of ESBL- and AmpC-type betalactamases in Enterobacteriaceae from chicken meat and dairy products. Ankara Üniversitesi Veteriner Fakültesi Dergisi. https://doi.org/10.1501/Vetfak_0000002809
  • Page, M. G. (2011). Beta-lactam antibiotics. In Antibiotic discovery and development (pp. 79-117). Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-1400-1_3
  • Paterson, D. L., & Bonomo, R. A. (2005). Extended-spectrum β-lactamases: A clinical update. Clinical Microbiology Reviews, 18(4), 657-686. https://doi.org/10.1128/CMR.18.4.657-686.2005
  • Pehlivanlar Önen, S., Aslantaş, Ö., Şebnem Yılmaz, E., & Kürekci, C. (2015). Prevalence of β-lactamase producing Escherichia coli from retail meat in Turkey. Journal of Food Science, 80(9), M2023-M2029. https://doi.org/10.1111/1750-3841.12984
  • Ramatla, T., Mafokwane, T., Lekota, K., Monyama, M., Khasapane, G., Serage, N., ... & Thekisoe, O. (2023). “One Health” perspective on prevalence of co-existing extended-spectrum β-lactamase (ESBL)-producing Escherichia coli and Klebsiella pneumoniae: A comprehensive systematic review and meta-analysis. Annals of Clinical Microbiology and Antimicrobials, 22(1), 88. https://doi.org/10.1186/s12941-023-00638-3
  • Roberts, S. C., & Zembower, T. R. (2021). Global increases in antibiotic consumption: A concerning trend for WHO targets. The Lancet Infectious Diseases, 21(1), 10-11. https://doi.org/10.1016/S1473-3099(20)30456-4
  • Sağlık Bakanlığı Halk Sağlığı Genel Müdürlüğü. (t.y.). Ulusal Antimikrobiyal Direnç Sürveyans Sistemi (UAMDSS). https://hsgm.saglik.gov.tr/tr/surveyanslar/uamdss.html (Erişim tarihi: 31 Ağustos 2024).
  • Sahin, S. (2020). Determination of the ciprofloxacin-resistant Escherichia coli isolated from chicken meat in Turkey. Journal of the Hellenic Veterinary Medical Society, 71(3), 2291-2300. https://doi.org/10.12681/jhvms.25162
  • Sarıcı, B. (2015). Tavuk etlerinde genişlemiş spektrumlu β-laktam antibiyotiklere dirençli enterik hastalıkların tanımlanması ve direnç profillerinin belirlenmesi (Yüksek lisans tezi). İstanbul Aydın Üniversitesi, İstanbul.
  • Sawa, T., Kooguchi, K., & Moriyama, K. (2020). Molecular diversity of extended-spectrum β-lactamases and carbapenemases, and antimicrobial resistance. Journal of Intensive Care, 8(1), 13. https://doi.org/10.1186/s40560-020-0429-6
  • Sullivan, R., Schaus, D., John, M., & Delport, J. A. (2015). Extended spectrum beta-lactamases: A minireview of clinically relevant groups. Journal of Medical Microbiology & Diagnosis, 4(203), 2161-0703. https://doi.org/10.4172/2161-0703.1000203
  • Tang, S. S., Apisarnthanarak, A., & Hsu, L. Y. (2014). Mechanisms of β-lactam antimicrobial resistance and epidemiology of major community-and healthcare-associated multidrug-resistant bacteria. Advanced Drug Delivery Reviews, 78, 3–13. https://doi.org/10.1016/j.addr.2014.08.003
  • Tekiner, İ. H., Orhan, H. İ., Hülağa Kaderoğlu, G., & Köklü, O. (2018). Gıda kaynaklı dirençli bakteriler: Gıda güvenliği ve gastronomi disiplini açısından önemi. In: Uluslararası Gastronomi Turizmi Araştırmaları Kongresi (ss. 427-435). Kocaeli, Türkiye.
  • Tooke, C. L., Hinchliffe, P., Bragginton, E. C., Colenso, C. K., Hirvonen, V. H., Takebayashi, Y., & Spencer, J. (2019). β-Lactamases and β-lactamase inhibitors in the 21st century. Journal of Molecular Biology, 431(18), 3472-3500. https://doi.org/10.1016/j.jmb.2019.04.002
  • Törneke, K., Torren‐Edo, J., Grave, K., & Mackay, D. K. J. (2015). The management of risk arising from the use of antimicrobial agents in veterinary medicine in EU/EEA countries–a review. Journal of Veterinary Pharmacology and Therapeutics, 38(6), 519-528. https://doi.org/10.1111/jvp.12226
  • Ulusal Sağlık Hizmeti İlişkili Enfeksiyonlar Sürveyans Ağı. (2023). Ulusal sağlık hizmeti ilişkili enfeksiyonlar sürveyans ağı özet raporu 2023. Erişim adresi: https://hsgm.saglik.gov.tr/depo/birimler/bulasici-hastaliklar-ve-erken-uyari-db/Dokumanlar/Raporlar/USHIESA_OZET_RAPOR_2023_03.07.2024.pdf. (Erişim tarihi: 31 Ekim 2024) Uyanık, T. (2022). Samsun ilindeki hastane kantinlerinde satışa sunulan tüketime hazır sandviçlerde genişlemiş spektrumlu beta-laktamaz üreten Escherichia coli varlığının araştırılması. Erciyes Üniversitesi Veteriner Fakültesi Dergisi, 19(1), 37-42. https://doi.org/10.32707/ercivet.1085252
  • Uyanik, T., Gülel, G. T., & Alişarli, M. (2021). Characterization of extended-spectrum beta-lactamase-producing Enterobacterales from organic and conventional chicken meats. Letters in Applied Microbiology, 72(6), 783-790. https://doi.org/10.1111/lam.13472
  • World Health Organization. (2019). No time to wait: Securing the future from drug-resistant infections. World Health Organization. https://www.who.int/publications/i/item/no-time-to-wait-securing-the-future-from-drug-resistant-infections (Retrieved February 6, 2025).
  • World Health Organization. (2023). Antimicrobial resistance. Retrieved September 1, 2024, from https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance
  • World Health Organization. (2024). List of priority bacterial pathogens. Retrieved from https://www.who.int/publications/i/item/9789240093461
  • Yıbar, A., & Soyutemiz, E. (2013). Gıda değeri olan hayvanlarda antibiyotik kullanımı ve muhtemel kalıntı riski. Atatürk Üniversitesi Veteriner Bilimleri Dergisi, 8(1), 97-104.
  • Yıldırım, D., & Pehlivanoğlu, F. (2018). Buzağıların genişlemiş spektrumlu beta-laktamaz üreten Escherichia coli taşıyıcılığı. Fırat Üniversitesi Sağlık Bilimleri Veteriner Dergisi, 32(3).
  • Yoon, E. J., Choi, Y. J., Won, D., Choi, J. R., & Jeong, S. H. (2024). Klebsiella pneumoniae, a human-dog shuttle organism for the genes of CTX-M ESBL. Scientific Reports, 14(1), 24725. https://doi.org/10.1038/s41598-024-73120-5

Genişlemiş Spekturumlu Βeta Laktamaz (GSBL) Sentezleyen Escherichia coli ve Halk Sağlığı Açısından Önemi

Year 2025, Volume: 7 Issue: 2, 78 - 86, 29.12.2025
https://doi.org/10.51755/turkvetj.1697519

Abstract

Enterobacteriaceae ailesinin üyesi olan Escherichia coli (E. coli), hem insan sağlığı hem de gıda güvenliği açısından önemli bir mikroorganizmadır. İnsan ve çiftlik hayvanlarının bağırsaklarında komensal olarak bulunan E. coli antimikrobiyal direncin izlenmesinde indikatör mikroorganizma olarak kullanılmaktadır. E. coli’nin gıdalarda bulunması fekal bulaşmanın önemli bir göstergesi olarak değerlendirilmektedir. E. coli insanlarda enterit, üriner sistem enfeksiyonu, septisemi ve neonatal menenjit gibi farklı enfeksiyonlara neden olmaktadır. E. coli enfeksiyonların tedavisinde çeşitli antibiyotikler kullanılmaktadır. Bu enfeksiyonların tedavisinde β-laktam grubu antibiyotikler (penisilinler, sefalosporinler, karbapenemler ve monobaktamlar) yaygın olarak kullanılmaktadır. β-laktam antibiyotiklerin yaygın kullanımı β-laktam direncinin ortaya çıkmasına ve yayılmasına yol açmaktadır. Genişlemiş Spektrumlu β-laktamaz (GSBL) üretimi özellikle E. coli ve Klebsiella pneumoniae (K. pneumoniae) görülmektedir. GSBL’ler, hastane ortamlarından, insandan insana, hayvanlardan insanlara, kontamine gıda tüketimiyle veya fekal olarak kontamine su dâhil olmak üzere farklı yollarla bulaşabilmektedir. GSBL sentezleyen E. coli’ler çoğunlukla çoklu ilaç direncine sahiptirler ve bu da klinikte enfeksiyonların tedavisini zorlaştırmaktadır. Dolayısıyla, bu derlemede hayvansal kaynaklı gıdalarda GSBL üreten E. coli’nin varlığı, antimikrobiyal direnç durumu ve halk sağlığı üzerindeki potansiyel riskleri değerlendirildi. E. coli’deki β-laktam, florokinolon ve makrolid grubu antibiyotiklere karşı görülen yaygın direncin önlenebilmesi için antimikrobiyal kullanımını sınırlandırmaya yönelik çalışmalara devam edilmesi gerektiğini göstermektedir. Bu antimikrobiyallere dirençli GSBL üreten E. coli’nin gıda zinciri boyunca insanlara yayılabilmesi riski nedeniyle gıda değeri olan hayvanlarda izlenmesi halk sağlığının korunması açısından dikkate değerdir. Tek sağlık yaklaşımı çerçevesinde GSBL üreten E. coli’nin insan, hayvan ve çevreyi de içine alan bütüncül bir yaklaşım olarak değerlendirilmelidir. Gıda zinciri boyunca GSBL üreten E. coli’lerin yayılma riski göz önüne alındığında hayvansal gıdaların izlenmesi halk sağlığının korunması yönünden kritik öneme sahiptir. Antimikrobiyal direnç ile mücadelede, veteriner ve beşeri hekimler başta olmak üzere multidisipliner yaklaşım ve kontrollü antibiyotik kullanımı büyük önem arz etmektedir.

Ethical Statement

Gerek yoktur

Supporting Institution

-

Thanks

Bu derleme, 23-25 Mayıs 2024 tarihîlerinde düzenlenen Sivas Cumhuriyet Üniversitesi Sağlık Öğrencileri Kongresi’nde (CÜSKON’24) özet bildiri olarak sözlü sunulmuştur.

References

  • Abushaheen, M. A., Fatani, A. J., Alosaimi, M., Mansy, W., George, M., Acharya, S., ... & Jhugroo, P. (2020). Antimicrobial resistance, mechanisms and its clinical significance. Disease-a-Month, 66(6), 100971. https://doi.org/10.1016/j.disamonth.2020.100971
  • Ahad, A., Salman, M., Ikram, A., Ashraf, Z., Amir, A., Saeed, A., & Ahmad, A. (2020). Prevalence and molecular characterization of ESBL-producing Escherichia coli in wastewater samples from Pakistan. International Journal of Infectious Diseases, 101, 33. https://doi.org/10.1016/j.ijid.2020.09.119
  • Alegría, Á., Arias-Temprano, M., Fernández-Natal, I., Rodríguez-Calleja, J. M., García-López, M. L., & Santos, J. A. (2020). Molecular diversity of ESBL-producing Escherichia coli from foods of animal origin and human patients. International Journal of Environmental Research and Public Health, 17(4), 1312. https://doi.org/10.3390/ijerph17041312
  • Ambler, R. P. 1980. “The structure of β-lactamases”, Philosophical Transactions of the Royal Society of London B Biological Sciences, 289, 321–31.
  • Bergšpica, I., Kaprou, G., Alexa, E. A., Prieto, M., & Alvarez-Ordóñez, A. (2020). Extended spectrum β-lactamase (ESBL) producing Escherichia coli in pigs and pork meat in the European Union. Antibiotics, 9(10), 678. https://doi.org/10.3390/antibiotics9100678
  • Bonnet, R., Sampaio, J. L. M., Chanal, C., Sirot, D., De Champs, C., Viallard, J. L., & Sirot, J. (2000). A novel class A extended-spectrum β-lactamase (BES-1) in Serratia marcescens isolated in Brazil. Antimicrobial Agents and Chemotherapy, 44(11), 3061-3068. https://doi.org/10.1128/aac.44.11.3061-3068.2000
  • Bush, K. (2018). Past and present perspectives on β-lactamases. Antimicrobial Agents and Chemotherapy, 62(10), e01076-18. https://doi.org/10.1128/AAC.01076-18
  • Bush, K., & Bradford, P. A. (2020). Epidemiology of β-lactamase-producing pathogens. Clinical Microbiology Reviews, 33(2), 10-1128. https://doi.org/10.1128/CMR.00047-19
  • Bush, K., Jacoby J. A. 2010. “Updated functional classification of betalactamases”, Antimicrobial Agents and Chemotherapy, 54 (3), 969-976.
  • Bush, K., Jacoby, GA. Medeiros, A. A. 1995. “A functional classification scheme for β-lactamases and its correlation with molecular structure”, Antimicrobial Agents and Chemotherapy, 39 (6),1211-33.
  • Centers for Disease Control and Prevention. (2022). Antimicrobial resistance threats in the United States, 2021-2022. U.S. Department of Health and Human Services. https://www.cdc.gov/antimicrobial-resistance/data-research/threats/update-2022.html
  • Centers for Disease Control and Prevention. (2024). Antimicrobial resistance: Causes. https://www.cdc.gov/antimicrobial-resistance/causes/index.html
  • Cloutier, M. J. (1995). Antibiotics: Mechanisms of action and acquisition of resistance-When magic bullets lose their magic. American Journal of Pharmaceutical Education, 59(2), 167-172.
  • Çil, G. İ., Cengiz, G., Arslan, B., & Şireli, U. T. (2020). Tavuk eti örneklerinde genişlemiş spektrumlu β-laktamaz üreten Escherichia coli suşlarının belirlenmesi. Eurasian Journal of Veterinary Sciences, 36(3). https://doi.org/10.15312/EurasianJVetSci.2020.277
  • Dağlar, D., & Öngüt, G. (2012). Genişlemiş spektrumlu beta-laktamazlar (GSBL) ve tanı yöntemleri. Annals of Health Sciences Research, 1(1), 1–9.
  • Danish Integrated Antimicrobial Resistance Monitoring and Research Programme (DANMAP). (2023). Use of antimicrobial agents and occurrence of antimicrobial resistance in bacteria from food animals, food and humans in Denmark. National Food Institute, Technical University of Denmark & Statens Serum Institut. https://www.danmap.org
  • De Angelis, G., Del Giacomo, P., Posteraro, B., Sanguinetti, M., & Tumbarello, M. (2020). Molecular mechanisms, epidemiology, and clinical importance of β-lactam resistance in Enterobacteriaceae. International Journal of Molecular Sciences, 21(14), 5090. https://doi.org/10.3390/ijms21145090.
  • De Koster, S., Ringenier, M., Xavier, B. B., Lammens, C., De Coninck, D., De Bruyne, K., … i-4-1-Health Study Group. (2023). Genetic characterization of ESBL-producing and ciprofloxacin-resistant Escherichia coli from Belgian broilers and pigs. Frontiers in Microbiology, 14, 1150470. https://doi.org/10.3389/fmicb.2023.1150470
  • Doi, Y., Paterson, D. L., Egea, P., Pascual, A., López-Cerero, L., Navarro, M. D., … Rodríguez-Baño, J. (2010). Extended-spectrum and CMY-type β-lactamase-producing Escherichia coli in clinical samples and retail meat from Pittsburgh, USA and Seville, Spain. Clinical Microbiology and Infection, 16(1), 33-38. https://doi.org/10.1111/j.1469-0691.2009.03001.x
  • Dolar, A. (2015). Kafes kuşlarında genişlemiş spektrumlu β-laktamaz sentezleyen Escherichia coli varlığının araştırılması (Yüksek lisans tezi). Hatay Mustafa Kemal Üniversitesi, Hatay.
  • European Commission (EC). (2020). Commission Implementing Decision (EU) 2020/1729 of 17 November 2020 on the monitoring and reporting of antimicrobial resistance in zoonotic and commensal bacteria and repealing Implementing Decision 2013/652/EU. Official Journal of the European Union. https://eurlex.europa.eu/eli/dec_impl/2020/1729/oj
  • European Food Safety Authority (EFSA), & European Centre for Disease Prevention and Control (ECDC). (2024). The European Union summary report on antimicrobial resistance in zoonotic and indicator bacteria from humans, animals and food in 2021-2022. EFSA Journal, 22(2), e8583.
  • Ewers, C., De Jong, A., Prenger-Berninghoff, E., El Garch, F., Leidner, U., Tiwari, S. K., & Semmler, T. (2021). Genomic diversity and virulence potential of ESBL- and AmpC-β-lactamase-producing Escherichia coli strains from healthy food animals across Europe. Frontiers in Microbiology, 12, 626774. https://doi.org/10.3389/fmicb.2021.626774
  • Falodun, O. I., Rabiu, A. G., Marcus, A. J., Dada, R. A., & Afolabi, M. C. (n.d.). Characterization of virulent Escherichia coli in healthy pet dog feces: Implications for public health. Journal of Istanbul Veterinary Sciences, 8(1), 5–12.
  • Gelalcha, B. D., & Kerro Dego, O. (2022). Extended-spectrum beta-lactamases-producing Enterobacteriaceae in the USA dairy cattle farms and implications for public health. Antibiotics, 11(10), 1313. https://doi.org/10.3390/antibiotics11101313
  • Gelalcha, B. D., Mohammed, R. I., Gelgie, A. E., & Kerro Dego, O. (2023). Molecular epidemiology and pathogenomics of extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae isolates from bulk tank milk in Tennessee, USA. Frontiers in Microbiology, 14, 1283165. https://doi.org/10.3389/fmicb.2023.1283165
  • Gücükoğlu, A., Uyanik, T., Çadirci, Ö., Uğurtay, E., Kanat, S., & Bölükbaş, A. (2023). Determination of extended-spectrum β-lactamase-producing Enterobacteriaceae in raw water buffalo milk and dairy products by conventional multiplex and real-time PCR. International Dairy Journal, 140, 105581. https://doi.org/10.1016/j.idairyj.2022.105581
  • Gülmez, M. (2022). Antimikrobiyel direnç: Küresel bir sorun. Dicle Üniversitesi Veteriner Fakültesi Dergisi, 15(1), 53–58. https://doi.org/10.47027/duvetfd.1059497
  • Hawkey, P. M. (2015). Multidrug-resistant Gram-negative bacteria: A product of globalization. Journal of Hospital Infection, 89(4), 241–247. https://doi.org/10.1016/j.jhin.2015.01.008
  • Husan, O., & Çadirci, Ö. (2019). Determination of extended spectrum β‐lactamase producing Enterobacteriaceae from cheese samples sold in public bazaars. Journal of Food Safety, 39(5), e12680. https://doi.org/10.1111/jfs.12680
  • İnat, G., Sırıken, B., Çiftci, A., Erol, I., Başkan, C., & Yıldırım, T. (2023). Molecular characterization of extended-spectrum β-lactamase-producing Enterobacteriaceae species in ground beef and chicken meat. International Journal of Food Microbiology, 398, 110228. https://doi.org/10.1016/j.ijfoodmicro.2023.110228
  • Kaesbohrer, A., Bakran-Lebl, K., Irrgang, A., Fischer, J., Kämpf, P., Schiffmann, A., ... & Hille, K. (2019). Diversity in prevalence and characteristics of ESBL/pAmpC producing E. coli in food in Germany. Veterinary Microbiology, 233, 52-60. https://doi.org/10.1016/j.vetmic.2019.03.025
  • Kawamura, K., Nagano, N., Suzuki, M., Wachino, J. I., Kimura, K., & Arakawa, Y. (2017). ESBL-producing Escherichia coli and its rapid rise among healthy people. Food Safety, 5(4), 122-150. https://doi.org/10.14252/foodsafetyfscj.2017011
  • Kluytmans, J. A., Overdevest, I. T., Willemsen, I., Kluytmans-Van Den Bergh, M. F., Van Der Zwaluw, K., Heck, M., ... & Johnson, J. R. (2013). Extended-spectrum β-lactamase-producing Escherichia coli from retail chicken meat and humans: Comparison of strains, plasmids, resistance genes, and virulence factors. Clinical Infectious Diseases, 56(4), 478-487. https://doi.org/10.1093/cid/cis929
  • Kot, B. (2019). Antibiotic resistance among uropathogenic Escherichia coli. Polish Journal of Microbiology, 68(4), 403. https://doi.org/10.33073/pjm-2019-048
  • Kürekci, C., Arkadaş, M., & Avşar, Y. K. (2016). Occurrence, genetic characterization and antimicrobial resistance of extended spectrum β-lactamase producing Escherichia coli isolated from Sürk samples, a traditional Turkish cheese. Journal of Food Measurement and Characterization, 10, 709-714.
  • Kürekci, C., Aydin, M., Yipel, M., Katouli, M., & Gündoğdu, A. (2017). Characterization of extended spectrum β-lactamase (ESBL)-producing Escherichia coli in Asi (Orontes) River in Turkey. Journal of Water and Health, 15(5), 788-798. https://doi.org/10.2166/wh.2017.257
  • Kürekci, C., Osek, J., Aydın, M., Tekeli, İ. O., Kurpas, M., Wieczorek, K., & Sakin, F. (2019). Evaluation of bulk tank raw milk and raw chicken meat samples as source of ESBL producing Escherichia coli in Turkey: Recent insights. Journal of Food Safety, 39(2), e12605. https://doi.org/10.1111/jfs.12605
  • Livermore, D. M. (2008). Defining an extended-spectrum beta-lactamase. Clinical Microbiology and Infection, 14(Suppl 1), 3-10. https://doi.org/10.1111/j.1469-0691.2007.01857.x
  • Livermore, D. M., & Brown, D. F. (2001). Detection of β-lactamase-mediated resistance. Journal of Antimicrobial Chemotherapy, 48(Suppl 1), 59-64. https://doi.org/10.1093/jac/48.suppl_1.59
  • Michael, G. B., Kaspar, H., Siqueira, A. K., de Freitas Costa, E., Corbellini, L. G., Kadlec, K., & Schwarz, S. (2017). Extended-spectrum β-lactamase (ESBL)-producing Escherichia coli isolates collected from diseased food-producing animals in the GERM-Vet monitoring program 2008-2014. Veterinary Microbiology, 200, 142-150. https://doi.org/10.1016/j.vetmic.2016.08.023
  • Murray, C. J., Ikuta, K. S., Sharara, F., Swetschinski, L., Aguilar, G. R., Gray, A., ... & Tasak, N. (2022). Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. The Lancet, 399(10325), 629-655. https://doi.org/10.1016/S0140-6736(21)02724-0
  • Murray, P. R. (2024). Temel tıbbi mikrobiyoloji: Esaslar ve klinik olgular (A. D. Us & A. Başustaoğlu, Çev. Ed., 7. baskı, ss. 49-51). Güneş Tıp Kitabevleri
  • Nagshetty, K., Shilpa, B. M., Patil, S. A., Shivannavar, C. T., & Manjula, N. G. (2021). An overview of extended spectrum beta lactamases and metallo beta lactamases. Advances in Microbiology, 11(01), 37. https://doi.org/10.4236/aim.2021.111004
  • O’Neill, J. (2016). Tackling drug-resistant infections globally: Final report and recommendations. The Review on Antimicrobial Resistance. https://amr-review.org/sites/default/files/160518_Final%20paper_with%20cover.pdf
  • Ocak, F., Çifci, A., Cesur, S., & Kınıklı, S. (2019). Genişlemiş spektrumlu beta-laktamaz üreten E. coli izolatlarının çeşitli antibiyotiklere duyarlılıklarının belirlenmesi. Turkish Journal of Clinics and Laboratory, 10(3), 384-387. https://doi.org/10.18663/tjcl.605182
  • Öndeş, N., & Özpınar, H. (2016). Occurrence of ESBL-producing Enterobacteriaceae in red meat samples. Kafkas Üniversitesi Veteriner Fakültesi Dergisi, 22(1). https://doi.org/10.9775/kvfd.2015.13944
  • Özpınar, H., Tekiner, İ. H., Sarıcı, B., Çakmak, B., Gökalp, F., & Özadam, A. (2017). Phenotypic characterization of ESBL- and AmpC-type betalactamases in Enterobacteriaceae from chicken meat and dairy products. Ankara Üniversitesi Veteriner Fakültesi Dergisi. https://doi.org/10.1501/Vetfak_0000002809
  • Page, M. G. (2011). Beta-lactam antibiotics. In Antibiotic discovery and development (pp. 79-117). Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-1400-1_3
  • Paterson, D. L., & Bonomo, R. A. (2005). Extended-spectrum β-lactamases: A clinical update. Clinical Microbiology Reviews, 18(4), 657-686. https://doi.org/10.1128/CMR.18.4.657-686.2005
  • Pehlivanlar Önen, S., Aslantaş, Ö., Şebnem Yılmaz, E., & Kürekci, C. (2015). Prevalence of β-lactamase producing Escherichia coli from retail meat in Turkey. Journal of Food Science, 80(9), M2023-M2029. https://doi.org/10.1111/1750-3841.12984
  • Ramatla, T., Mafokwane, T., Lekota, K., Monyama, M., Khasapane, G., Serage, N., ... & Thekisoe, O. (2023). “One Health” perspective on prevalence of co-existing extended-spectrum β-lactamase (ESBL)-producing Escherichia coli and Klebsiella pneumoniae: A comprehensive systematic review and meta-analysis. Annals of Clinical Microbiology and Antimicrobials, 22(1), 88. https://doi.org/10.1186/s12941-023-00638-3
  • Roberts, S. C., & Zembower, T. R. (2021). Global increases in antibiotic consumption: A concerning trend for WHO targets. The Lancet Infectious Diseases, 21(1), 10-11. https://doi.org/10.1016/S1473-3099(20)30456-4
  • Sağlık Bakanlığı Halk Sağlığı Genel Müdürlüğü. (t.y.). Ulusal Antimikrobiyal Direnç Sürveyans Sistemi (UAMDSS). https://hsgm.saglik.gov.tr/tr/surveyanslar/uamdss.html (Erişim tarihi: 31 Ağustos 2024).
  • Sahin, S. (2020). Determination of the ciprofloxacin-resistant Escherichia coli isolated from chicken meat in Turkey. Journal of the Hellenic Veterinary Medical Society, 71(3), 2291-2300. https://doi.org/10.12681/jhvms.25162
  • Sarıcı, B. (2015). Tavuk etlerinde genişlemiş spektrumlu β-laktam antibiyotiklere dirençli enterik hastalıkların tanımlanması ve direnç profillerinin belirlenmesi (Yüksek lisans tezi). İstanbul Aydın Üniversitesi, İstanbul.
  • Sawa, T., Kooguchi, K., & Moriyama, K. (2020). Molecular diversity of extended-spectrum β-lactamases and carbapenemases, and antimicrobial resistance. Journal of Intensive Care, 8(1), 13. https://doi.org/10.1186/s40560-020-0429-6
  • Sullivan, R., Schaus, D., John, M., & Delport, J. A. (2015). Extended spectrum beta-lactamases: A minireview of clinically relevant groups. Journal of Medical Microbiology & Diagnosis, 4(203), 2161-0703. https://doi.org/10.4172/2161-0703.1000203
  • Tang, S. S., Apisarnthanarak, A., & Hsu, L. Y. (2014). Mechanisms of β-lactam antimicrobial resistance and epidemiology of major community-and healthcare-associated multidrug-resistant bacteria. Advanced Drug Delivery Reviews, 78, 3–13. https://doi.org/10.1016/j.addr.2014.08.003
  • Tekiner, İ. H., Orhan, H. İ., Hülağa Kaderoğlu, G., & Köklü, O. (2018). Gıda kaynaklı dirençli bakteriler: Gıda güvenliği ve gastronomi disiplini açısından önemi. In: Uluslararası Gastronomi Turizmi Araştırmaları Kongresi (ss. 427-435). Kocaeli, Türkiye.
  • Tooke, C. L., Hinchliffe, P., Bragginton, E. C., Colenso, C. K., Hirvonen, V. H., Takebayashi, Y., & Spencer, J. (2019). β-Lactamases and β-lactamase inhibitors in the 21st century. Journal of Molecular Biology, 431(18), 3472-3500. https://doi.org/10.1016/j.jmb.2019.04.002
  • Törneke, K., Torren‐Edo, J., Grave, K., & Mackay, D. K. J. (2015). The management of risk arising from the use of antimicrobial agents in veterinary medicine in EU/EEA countries–a review. Journal of Veterinary Pharmacology and Therapeutics, 38(6), 519-528. https://doi.org/10.1111/jvp.12226
  • Ulusal Sağlık Hizmeti İlişkili Enfeksiyonlar Sürveyans Ağı. (2023). Ulusal sağlık hizmeti ilişkili enfeksiyonlar sürveyans ağı özet raporu 2023. Erişim adresi: https://hsgm.saglik.gov.tr/depo/birimler/bulasici-hastaliklar-ve-erken-uyari-db/Dokumanlar/Raporlar/USHIESA_OZET_RAPOR_2023_03.07.2024.pdf. (Erişim tarihi: 31 Ekim 2024) Uyanık, T. (2022). Samsun ilindeki hastane kantinlerinde satışa sunulan tüketime hazır sandviçlerde genişlemiş spektrumlu beta-laktamaz üreten Escherichia coli varlığının araştırılması. Erciyes Üniversitesi Veteriner Fakültesi Dergisi, 19(1), 37-42. https://doi.org/10.32707/ercivet.1085252
  • Uyanik, T., Gülel, G. T., & Alişarli, M. (2021). Characterization of extended-spectrum beta-lactamase-producing Enterobacterales from organic and conventional chicken meats. Letters in Applied Microbiology, 72(6), 783-790. https://doi.org/10.1111/lam.13472
  • World Health Organization. (2019). No time to wait: Securing the future from drug-resistant infections. World Health Organization. https://www.who.int/publications/i/item/no-time-to-wait-securing-the-future-from-drug-resistant-infections (Retrieved February 6, 2025).
  • World Health Organization. (2023). Antimicrobial resistance. Retrieved September 1, 2024, from https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance
  • World Health Organization. (2024). List of priority bacterial pathogens. Retrieved from https://www.who.int/publications/i/item/9789240093461
  • Yıbar, A., & Soyutemiz, E. (2013). Gıda değeri olan hayvanlarda antibiyotik kullanımı ve muhtemel kalıntı riski. Atatürk Üniversitesi Veteriner Bilimleri Dergisi, 8(1), 97-104.
  • Yıldırım, D., & Pehlivanoğlu, F. (2018). Buzağıların genişlemiş spektrumlu beta-laktamaz üreten Escherichia coli taşıyıcılığı. Fırat Üniversitesi Sağlık Bilimleri Veteriner Dergisi, 32(3).
  • Yoon, E. J., Choi, Y. J., Won, D., Choi, J. R., & Jeong, S. H. (2024). Klebsiella pneumoniae, a human-dog shuttle organism for the genes of CTX-M ESBL. Scientific Reports, 14(1), 24725. https://doi.org/10.1038/s41598-024-73120-5
There are 70 citations in total.

Details

Primary Language Turkish
Subjects Veterinary Food Hygiene and Technology
Journal Section Review
Authors

Seyda Şahin 0000-0002-8173-7818

İrem Koç 0000-0003-0998-5873

Submission Date May 12, 2025
Acceptance Date July 18, 2025
Publication Date December 29, 2025
Published in Issue Year 2025 Volume: 7 Issue: 2

Cite

APA Şahin, S., & Koç, İ. (2025). Genişlemiş Spekturumlu Βeta Laktamaz (GSBL) Sentezleyen Escherichia coli ve Halk Sağlığı Açısından Önemi. Turkish Veterinary Journal, 7(2), 78-86. https://doi.org/10.51755/turkvetj.1697519